当前位置:网站首页>pybullet机器人仿真环境搭建 5.机器人位姿可视化
pybullet机器人仿真环境搭建 5.机器人位姿可视化
2022-06-26 16:05:00 【RuiH.AI】
前言
本篇记录一下如何在pybullet中可视化机器人的位姿。
在仿真环境中画线
pybullet提供了在仿真环境中添加点线文本的api,比如addUserDebugLine, addUserDebugPoints等,并返回这些点线的id,可用于后续的删除修改。
这里我写了一个画物体坐标系的函数,来可视化位姿,代码应该很容易懂:
def draw_pose_in_pybullet(*pose):
""" *Draw pose frame in pybullet* :param pose: np.ndarray, shape=[4, 4] or tuple of (position, orientation) """
if len(pose) == 1:
position = pose[0][:3, 3]
rotation = pose[0][:3, :3]
else:
position, orientation = pose
print(orientation)
rotation = np.array(p.getMatrixFromQuaternion(orientation)).reshape([3, 3])
print(rotation)
start_point = position
end_point_x = position + rotation[:, 0] * 2
end_point_y = position + rotation[:, 1] * 2
end_point_z = position + rotation[:, 2] * 2
p.addUserDebugLine(start_point, end_point_x, [1, 0, 0])
p.addUserDebugLine(start_point, end_point_y, [0, 1, 0])
p.addUserDebugLine(start_point, end_point_z, [0, 0, 1])
代码例程
把上面的函数与上一篇pybullet环境的博客结合,给出机器人当前的位姿:
import time
import numpy as np
import pybullet
import pybullet_data
def draw_pose_in_pybullet(*pose):
""" *Draw pose frame in pybullet* :param pose: np.ndarray, shape=[4, 4] or tuple of (position, orientation) """
if len(pose) == 1:
position = pose[0][:3, 3]
rotation = pose[0][:3, :3]
else:
position, orientation = pose
print(orientation)
rotation = np.array(pybullet.getMatrixFromQuaternion(orientation)).reshape([3, 3])
print(rotation)
start_point = position
end_point_x = position + rotation[:, 0] * 2
end_point_y = position + rotation[:, 1] * 2
end_point_z = position + rotation[:, 2] * 2
pybullet.addUserDebugLine(start_point, end_point_x, [1, 0, 0])
pybullet.addUserDebugLine(start_point, end_point_y, [0, 1, 0])
pybullet.addUserDebugLine(start_point, end_point_z, [0, 0, 1])
if __name__ == '__main__':
client = pybullet.connect(pybullet.GUI)
pybullet.setAdditionalSearchPath(pybullet_data.getDataPath())
pybullet.setPhysicsEngineParameter(numSolverIterations=10)
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_GUI, 0)
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_TINY_RENDERER, 0)
pybullet.setGravity(0, 0, -9.8)
# pybullet.setRealTimeSimulation(1)
shift = [0, 0, 0]
scale = [1, 1, 1]
visual_shape_id = pybullet.createVisualShape(
shapeType=pybullet.GEOM_MESH,
fileName="sphere_smooth.obj",
rgbaColor=[1, 1, 1, 1],
specularColor=[0.4, 0.4, 0],
visualFramePosition=[0, 0, 0],
meshScale=scale)
collision_shape_id = pybullet.createCollisionShape(
shapeType=pybullet.GEOM_MESH,
fileName="sphere_smooth.obj",
collisionFramePosition=[0, 0, 0],
meshScale=scale)
pybullet.createMultiBody(
baseMass=1,
baseCollisionShapeIndex=collision_shape_id,
baseVisualShapeIndex=visual_shape_id,
basePosition=[-2, -1, 1],
useMaximalCoordinates=True)
plane_id = pybullet.loadURDF("plane100.urdf", useMaximalCoordinates=True)
cube_ind = pybullet.loadURDF('cube.urdf', (3, 1, 1), pybullet.getQuaternionFromEuler([0, 0, 0]))
r_ind = pybullet.loadURDF('r2d2.urdf', (1, 1, 1), pybullet.getQuaternionFromEuler([0, 0, 1.57]))
# 创建结束,重新开启渲染
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)
num_joints = pybullet.getNumJoints(r_ind)
# 获得各关节的信息
joint_infos = []
for i in range(num_joints):
joint_info = pybullet.getJointInfo(r_ind, i)
if joint_info[2] != pybullet.JOINT_FIXED:
if 'wheel' in str(joint_info[1]):
print(joint_info)
joint_infos.append(joint_info)
maxforce = 10
velocity = 31.4
while True:
pybullet.removeAllUserDebugItems() # 把之前的线删除,否则会一直在仿真环境中出现
for i in range(len(joint_infos)):
pybullet.setJointMotorControl2(bodyUniqueId=r_ind,
jointIndex=joint_infos[i][0],
controlMode=pybullet.VELOCITY_CONTROL,
targetVelocity=velocity,
force=maxforce)
position, orientation = pybullet.getBasePositionAndOrientation(r_ind)
draw_pose_in_pybullet(position, orientation)
pybullet.stepSimulation()
time.sleep(1./240)
可视化效果如下:
需要注意,画线操作和删除线操作都会严重影响pybullet引擎的运行速度,实际感觉一卡一卡的。
边栏推荐
- Simple use of tensor
- Svg savage animation code
- NFT transaction principle analysis (2)
- 【毕业季】致毕业生的一句话:天高任鸟飞,海阔凭鱼跃
- R language plot visualization: plot visualizes the normalized histogram, adds the density curve KDE to the histogram, and uses geom at the bottom edge of the histogram_ Adding edge whisker graph with
- STEPN 新手入門及進階
- Acid of redis
- 【力扣刷题】单调栈:84. 柱状图中最大的矩形
- 6 自定义层
- 3 keras版本模型训练
猜你喜欢

Angel 3.2.0 new version released! Figure the computing power is strengthened again

TCP拥塞控制详解 | 1. 概述

3 keras版本模型训练

【蓝桥杯集训100题】scratch辨别质数合数 蓝桥杯scratch比赛专项预测编程题 集训模拟练习题第15题

100+数据科学面试问题和答案总结 - 基础知识和数据分析

牛客小白月赛50

What is the process of switching C # read / write files from user mode to kernel mode?
![[Blue Bridge Cup training 100 questions] scratch distinguishing prime numbers and composite numbers Blue Bridge Cup scratch competition special prediction programming question intensive training simul](/img/26/c0c8a406ff4ffe0ae37d277f730bd0.png)
[Blue Bridge Cup training 100 questions] scratch distinguishing prime numbers and composite numbers Blue Bridge Cup scratch competition special prediction programming question intensive training simul

Arduino UNO + DS1302简单获取时间并串口打印

NFT合约基础知识讲解
随机推荐
OpenSea上如何创建自己的NFT(Polygon)
STEPN 新手入門及進階
LeetCode 单周赛298,前三题
Swiftui retrieves the missing list view animation
How to identify contractual issues
【207】Apache崩溃的几个很可能的原因,apache崩溃几个
10 tf.data
8 user defined evaluation function
牛客小白月赛50
5000 word analysis: the way of container security attack and defense in actual combat scenarios
Failed to get convolution algorithm. This is probably because cuDNN failed to initialize
R语言plotly可视化:小提琴图、多分类变量小提琴图、分组(grouped)小提琴图、分裂的分组小提琴图、每个小提琴图内部分为两组数据、每个分组占小提琴图的一半、自定义小提琴图的调色板、抖动数据点
【力扣刷题】二分查找:4. 寻找两个正序数组的中位数
NFT Platform Security Guide (2)
4 custom model training
JS教程之Electron.js设计强大的多平台桌面应用程序的好工具
10 tf. data
Net based on girdview control to delete and edit row data
油田勘探问题
TCP拥塞控制详解 | 1. 概述