当前位置:网站首页>20211108 A转置乘A是正定矩阵吗?A转置乘A是正定矩阵的充分必要条件是什么?
20211108 A转置乘A是正定矩阵吗?A转置乘A是正定矩阵的充分必要条件是什么?
2022-06-13 08:55:00 【我起个什么名字呢】
结论1: A T A A^TA ATA不一定是正定矩阵,但一定是半正定矩阵(即特征值一定大于等于0)。
证明:
对于任意非零 x ∈ R x\in\mathbb{R} x∈R,存在
x T A T A x = ( A x ) T A x ⩾ 0 x^{T}A^TAx = {(Ax)}^TAx\geqslant 0 xTATAx=(Ax)TAx⩾0如果非零矢量 x x x处于 A A A的零空间,那么 ( A x ) T A x = 0 {(Ax)}^TAx=0 (Ax)TAx=0,否则 ( A x ) T A x > 0 {(Ax)}^TAx>0 (Ax)TAx>0,另外 A T A A^TA ATA 一定是对称的。因此 A T A A^TA ATA 不一定是正定矩阵,但一定是半正定矩阵(正定矩阵要求对于任意非零 x x x 都满足二次型大于0)。
结论2: A T A A^TA ATA是正定矩阵的充分必要条件是 A A A 满足列满秩。
证明:
如果 A A A 满足列满秩,那么 A x = 0 Ax=0 Ax=0的解只有 x = 0 x=0 x=0,也就是说对于任意非零 x ∈ R x\in\mathbb{R} x∈R, A x ≠ 0 Ax \neq 0 Ax=0,那么 ( A x ) T A x ≠ 0 = x T A T A x {(Ax)}^TAx \neq 0 = x^{T}A^TAx (Ax)TAx=0=xTATAx,即 A T A A^TA ATA 是正定矩阵,正定矩阵一定可逆。反着可以推回去。
结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如: [ 1 0 ] ∗ [ 0 1 ] ⊤ = 0 [1~~0]*[0~~1]^{\top}=0 [1 0]∗[0 1]⊤=0。
结论4:如果 B \boldsymbol{B} B是半正定,给定 δ > 0 \delta>0 δ>0, ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)−1 是正定的, ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)−1一定存在。
证明:
如果 B \boldsymbol{B} B是半正定,令 B = P T P \boldsymbol{B}=\boldsymbol{P}^{T}\boldsymbol P B=PTP,P为半正定。
结论4:如果 A A A是行满秩, B B B是列满秩,那么一定存在 K K K使得 A K B AKB AKB的特征值均正(不一定是正定矩阵)。
证明:取 K K K为 A T B T A^TB^T ATBT,则 A K B = A A T B T B AKB=AA^TB^TB AKB=AATBTB。其中,根据结论2, A A T AA^T AAT和 B T B B^TB BTB均为正定矩阵,两个正定矩阵相乘,根据20211130 正定矩阵的几个不等式的结论4,特征值一定均正,但是不一定是正定矩阵。
边栏推荐
- 【安全】零基礎如何從0到1逆襲成為安全工程師
- Pytorch model tuning - only some layers of the pre training model are loaded
- DIY无人机(匿名拓控者P2+F330机架)
- The 360 mobile assistant on Huawei maimang 7 cannot be uninstalled
- PHP wechat special merchant incoming V3 packaging interface
- Mobile terminal development I: basic concepts
- Object in ES6 Use of entries()
- Use of grep
- Void* pointer
- Use of addeventlistener in JS
猜你喜欢
![[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation](/img/4d/c33a3fcc3b45c2369e1f1f74a8d51b.png)
[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation

transforms. ColorJitter(0.3, 0, 0, 0)

Print an array clockwise

消息中间件

5. Attribute selector

教程篇(5.0) 02. 管理 * FortiEDR * Fortinet 网络安全专家 NSE 5

Loss outputs Nan for the Nan model

Installation of sonarqube code quality management platform (to be continued)

Docker installing MySQL local remote connection docker container MySQL

A solution to create a new EXCEL workbook on win10 computer and change the suffix to xlsm (normally it should be xlsx)
随机推荐
About RSA encryption and decryption principle
How to save the video of wechat video number locally?
A very detailed blog about the implementation of bilinear interpolation by opencv
Docker installing MySQL local remote connection docker container MySQL
File upload JS
useRoutes() may be used only in the context of a <Router> component.
Cesium displays a pop-up box at the specified position and moves with the map
System analysis - detailed description
Mobile terminal development I: basic concepts
Uni app essay
pytorch相同结构不同参数名模型加载权重
Paging query template of Oracle
Judgment of single exclamation point and double exclamation point in JS
4、 Js-es5-i / O
【安全】零基礎如何從0到1逆襲成為安全工程師
Map 23 summary
Four kinds of hooks in deep learning
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
turf. JS usage
[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation