当前位置:网站首页>ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图/依赖关系贡献图可视化实现可解释性之攻略
ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图/依赖关系贡献图可视化实现可解释性之攻略
2022-07-30 22:04:00 【一个处女座的程序猿】
ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图/依赖关系贡献图可视化实现可解释性之详细攻略
目录
基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图可视化实现可解释性
# T1、基于树模型TreeExplainer创建Explainer并计算SHAP值,且进行单个样本力图可视化(分析单个样本预测的解释)
# T2、基于核模型KernelExplainer创建Explainer并计算SHAP值,且进行单个样本力图可视化(分析单个样本预测的解释)
# (1)、基于树模型TreeExplainer创建Explainer并计算SHAP值
# (2)、全验证数据集样本各特征shap值summary_plot可视化
# (3)、依赖关系贡献图dependence_plot可视化
相关文章
ML:机器学习可解释性之SHAP值之理解单样本单特征预测
ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图可视化实现可解释性之详细攻略
ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图可视化实现可解释性之详细攻略实现
基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图可视化实现可解释性
# 1、定义数据集
Date | Team | Opponent | Goal Scored | Ball Possession % | Attempts | On-Target | Off-Target | Blocked | Corners | Offsides | Free Kicks | Saves | Pass Accuracy % | Passes | Distance Covered (Kms) | Fouls Committed | Yellow Card | Yellow & Red | Red | Man of the Match | 1st Goal | Round | PSO | Goals in PSO | Own goals | Own goal Time |
14-06-2018 | Russia | Saudi Arabia | 5 | 40 | 13 | 7 | 3 | 3 | 6 | 3 | 11 | 0 | 78 | 306 | 118 | 22 | 0 | 0 | 0 | Yes | 12 | Group Stage | No | 0 | ||
14-06-2018 | Saudi Arabia | Russia | 0 | 60 | 6 | 0 | 3 | 3 | 2 | 1 | 25 | 2 | 86 | 511 | 105 | 10 | 0 | 0 | 0 | No | Group Stage | No | 0 | |||
15-06-2018 | Egypt | Uruguay | 0 | 43 | 8 | 3 | 3 | 2 | 0 | 1 | 7 | 3 | 78 | 395 | 112 | 12 | 2 | 0 | 0 | No | Group Stage | No | 0 | |||
15-06-2018 | Uruguay | Egypt | 1 | 57 | 14 | 4 | 6 | 4 | 5 | 1 | 13 | 3 | 86 | 589 | 111 | 6 | 0 | 0 | 0 | Yes | 89 | Group Stage | No | 0 | ||
15-06-2018 | Morocco | Iran | 0 | 64 | 13 | 3 | 6 | 4 | 5 | 0 | 14 | 2 | 86 | 433 | 101 | 22 | 1 | 0 | 0 | No | Group Stage | No | 0 | 1 | 90 |
# 2、数据预处理
# 2.1、分离特征与标签
df_X Goal Scored Ball Possession % Attempts ... Yellow & Red Red Goals in PSO
0 5 40 13 ... 0 0 0
1 0 60 6 ... 0 0 0
2 0 43 8 ... 0 0 0
3 1 57 14 ... 0 0 0
4 0 64 13 ... 0 0 0
[5 rows x 18 columns]
df_y 0 True
1 False
2 False
3 True
4 False
Name: Man of the Match, dtype: bool
# 3、模型建立和训练
# 3.1、数据集切分
# 3.2、模型训练
# 4、模型特征重要性解释可视化
# 4.1、单个样本基于shap值进行解释可视化
# (1)、挑选某条样本数据并转为array格式
输出当前测试样本:5
Goal Scored 2
Ball Possession % 38
Attempts 13
On-Target 7
Off-Target 4
Blocked 2
Corners 6
Offsides 1
Free Kicks 18
Saves 1
Pass Accuracy % 69
Passes 399
Distance Covered (Kms) 148
Fouls Committed 25
Yellow Card 1
Yellow & Red 0
Red 0
Goals in PSO 3
Name: 118, dtype: int64
输出当前测试样本的真实label: False
输出当前测试样本的的预测概率: [[0.29 0.71]]
输出当前测试样本:7
Goal Scored 0
Ball Possession % 53
Attempts 16
On-Target 4
Off-Target 10
Blocked 2
Corners 7
Offsides 1
Free Kicks 20
Saves 1
Pass Accuracy % 77
Passes 466
Distance Covered (Kms) 107
Fouls Committed 23
Yellow Card 1
Yellow & Red 0
Red 0
Goals in PSO 0
Name: 35, dtype: int64
输出当前测试样本的真实label: False
输出当前测试样本的的预测概率: [[0.56 0.44]]
# (2)、利用Shap值解释RFC模型
# T1、基于树模型TreeExplainer创建Explainer并计算SHAP值,且进行单个样本力图可视化(分析单个样本预测的解释)
# T2、基于核模型KernelExplainer创建Explainer并计算SHAP值,且进行单个样本力图可视化(分析单个样本预测的解释)
# 4.2、多个样本基于shap值进行解释可视化
# (1)、基于树模型TreeExplainer创建Explainer并计算SHAP值
# (2)、全验证数据集样本各特征shap值summary_plot可视化
# (3)、依赖关系贡献图dependence_plot可视化
边栏推荐
- MySQL 8.0.29 decompressed version installation tutorial (valid for personal testing)
- 基于ABP实现DDD--领域服务、应用服务和DTO实践
- 系统结构考点之CRAY-1向量处理机
- ThinkPHP高仿蓝奏云网盘系统源码/对接易支付系统程序
- MYSQL JDBC Book Management System
- socket: Kernel initialization and detailed process of creating streams (files)
- y82.第四章 Prometheus大厂监控体系及实战 -- 监控扩展和prometheus 联邦(十三)
- 2022/07/30 学习笔记 (day20) 面试题积累
- 2sk2225代换3A/1500V中文资料【PDF数据手册】
- 基于ABP实现DDD--领域逻辑和应用逻辑
猜你喜欢
代码越写越乱?那是因为你没用责任链
mysql 时间字段默认设置为当前时间
How strict Typescript strict mode?
How do I refresh the company's background management system (Part 1) - performance optimization
navicat连接MySQL报错:1045 - Access denied for user ‘root‘@‘localhost‘ (using password YES)
解决npm warn config global `--global`, `--local` are deprecated. use `--location=global` instead
Rust编译报错:error: linker `cc` not found
About the data synchronization delay of MySQL master-slave replication
cmd (command line) to operate or connect to the mysql database, and to create databases and tables
CISP-PTE真题演示
随机推荐
小心你的字典和样板代码
2022/07/30 学习笔记 (day20) 面试题积累
navicat新建数据库
How strict Typescript strict mode?
Google Earth Engine ——ee.List.sequence函数的使用
Navicat connection MySQL error: 1045 - Access denied for user 'root'@'localhost' (using password YES)
代码越写越乱?那是因为你没用责任链
史上最全的Redis基础+进阶项目实战总结笔记
正则表达式语法及使用
MySQL 5.7 detailed download, installation and configuration tutorial
c语言进阶篇:指针(五)
QT 在父类中添加子类的流程,object tree,
Navicat cannot connect to mysql super detailed processing method
NEOVIM下载安装与配置
The structure of knowledge in the corners of the C language
登堂入室之soc开发makefile
MySQL 8.0.29 解压版安装教程(亲测有效)
LeetCode · 23. Merge K ascending linked lists · recursion · iteration
通过社交媒体建立个人IP的 5 种行之有效的策略
Google Earth Engine ——快速实现MODIS影像NDVI动画的在线加载并导出