当前位置:网站首页>1、 Multiprocessing.pool.remotetraceback
1、 Multiprocessing.pool.remotetraceback
2022-07-29 06:08:00 【My hair is messy】
Most of the following problems are data problems `.
// A code block
var foo = 'bar';
multiprocessing.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/multiprocessing/pool.py", line 119, in worker
result = (True, func(*args, **kwds))
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/site-packages/mxnet/gluon/data/dataloader.py", line 429, in _worker_fn
batch = batchify_fn([_worker_dataset[i] for i in samples])
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/site-packages/mxnet/gluon/data/dataloader.py", line 429, in <listcomp>
batch = batchify_fn([_worker_dataset[i] for i in samples])
File "/data2/enducation/paper_recog_total/train-paper-recog/line_detect/data/paper_dataset.py", line 375, in __getitem__
data_dict = self._transforms(data_dict)
File "/data2/enducation/paper_recog_total/train-paper-recog/line_detect/data/transforms_paper.py", line 13, in __call__
args = trans(args)
File "/data2/enducation/paper_recog_total/train-paper-recog/line_detect/data/transforms_paper.py", line 468, in __call__
dst_points = np.array([[rdw(), rdh()], [w-1-rdw(), rdh()], [w-1-rdw(), h-1-rdh()], [rdw(), h-1-rdh()]])
File "/data2/enducation/paper_recog_total/train-paper-recog/line_detect/data/transforms_paper.py", line 466, in <lambda>
rdh = lambda: np.random.randint(0, self.max_affine_xy_ratio * h)
File "mtrand.pyx", line 746, in numpy.random.mtrand.RandomState.randint
File "_bounded_integers.pyx", line 1254, in numpy.random._bounded_integers._rand_int64
ValueError: low >= high
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/data2/enducation/paper_recog_total/train-paper-recog/line_detect/scripts/train_gluon_testpaper.py", line 233, in <module>
for batch_cnt, data_batch in enumerate(tqdm.tqdm(train_loader)):
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/site-packages/tqdm/std.py", line 1178, in __iter__
for obj in iterable:
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/site-packages/mxnet/gluon/data/dataloader.py", line 484, in __next__
batch = pickle.loads(ret.get(self._timeout))
File "/home/unaguo/anaconda3/envs/pt1.3-py3.6/lib/python3.6/multiprocessing/pool.py", line 644, in get
raise self._value
ValueError: low >= high
Solutions :
take mx.gluon.data.DataLoader Revision in China thread_pool=True, What does that mean ?
If True, use threading pool instead of multiprocessing pool. Using threadpool can avoid shared memory usage. If DataLoader is more IO bounded or GIL is not a killing problem, threadpool version may achieve better performance than multiprocessing.
translate : If True, Then use thread pool instead of multiprocessing pool . Using thread pool can avoid the use of shared memory . If “DataLoader” Of IO Wider scope , perhaps GIL It's not a fatal problem , The thread pool version may achieve better performance than multiprocessing .
train_loader = mx.gluon.data.DataLoader(train_dataset, batch_size=config.TRAIN.batch_size,
shuffle=True, num_workers=2, thread_pool=True,
last_batch="discard", batchify_fn=batch_fn)
边栏推荐
- 【语义分割】Fully Attentional Network for Semantic Segmentation
- [image classification] how to use mmclassification to train your classification model
- Anr Optimization: cause oom crash and corresponding solutions
- Spring, summer, autumn and winter with Miss Zhang (3)
- Wechat applet source code acquisition (download with tools)
- Isaccessible() method: use reflection techniques to improve your performance several times
- 【Transformer】ACMix:On the Integration of Self-Attention and Convolution
- D3.js vertical relationship diagram (with arrows and text description of connecting lines)
- 【图像分类】如何使用 mmclassification 训练自己的分类模型
- [clustmaps] visitor statistics
猜你喜欢

anaconda中移除旧环境、增加新环境、查看环境、安装库、清理缓存等操作命令

【目标检测】KL-Loss:Bounding Box Regression with Uncertainty for Accurate Object Detection

【Transformer】AdaViT: Adaptive Tokens for Efficient Vision Transformer

【语义分割】Mapillary 数据集简介

虚假新闻检测论文阅读(一):Fake News Detection using Semi-Supervised Graph Convolutional Network

一、Focal Loss理论及代码实现

PyTorch的数据读取机制

迁移学习—Geodesic Flow Kernel for Unsupervised Domain Adaptation

ASM piling: after learning ASM tree API, you don't have to be afraid of hook anymore

一、常见损失函数的用法
随机推荐
iSCSI vs iSER vs NVMe-TCP vs NVMe-RDMA
These process knowledge you must know
[target detection] generalized focal loss v1
[competition website] collect machine learning / deep learning competition website (continuously updated)
Configuration and use of Nacos external database
Set automatic build in idea - change the code, and refresh the page without restarting the project
Change! Change! Change!
[DL] build convolutional neural network for regression prediction (detailed tutorial of data + code)
神经网络相关知识回顾(PyTorch篇)
一、multiprocessing.pool.RemoteTraceback
Reporting Services- Web Service
[semantic segmentation] setr_ Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformer
四、One-hot和损失函数的应用
【语义分割】语义分割综述
Power Bi report server custom authentication
第一周任务 深度学习和pytorch基础
二、深度学习数据增强方法汇总
AttributeError: module ‘tensorflow‘ has no attribute ‘placeholder‘
[target detection] KL loss: bounding box progression with uncertainty for accurate object detection
Error in installing pyspider under Windows: Please specify --curl dir=/path/to/build/libcurl solution