当前位置:网站首页>opencv学习笔记二——图像基本操作
opencv学习笔记二——图像基本操作
2022-07-07 05:19:00 【我是一个小稻米】
1. POI区域:感兴趣区域
2. 边缘填充
3. 数值运算
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from PIL import Image
image1 = mpimg.imread('1.jpg')
image2 = mpimg.imread('2.jpg')
plt.imshow(image1)

plt.imshow(image2)

图像加法
image3 = image1+image2
plt.imshow(image3)

图像裁剪
plt.imshow(image1[100:-100, 100:-100, :]);

图像缩放
fx和fy表示缩放倍数
image4 = cv2.resize(image1, (0, 0), fx=3, fy=1)
plt.imshow(image4);

4. 图像阈值
ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图像,只能是单通道图像
- dst:输出图
- thresh:阈值
- maxval:当像素值超过了阈值或小于阈值时的取值
- type:二值化的类型
- cv2.THRESH_BINARY 超过阈值取maxval,否则取0
- cv2.THRESH_BINARY_INV THRESH_BINARY的反转
- cv2.THRESH_TRUNC 大于阈值设置阈值,其余不变
- cv2.THRESH_TOZERO 大于阈值不变,其余设为0
- cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
image1_gray = image1[:,:,0]
res, thresh1 = cv2.threshold(image1_gray, 127, 255, cv2.THRESH_BINARY)
res, thresh2 = cv2.threshold(image1_gray, 127, 255, cv2.THRESH_BINARY_INV)
res, thresh3 = cv2.threshold(image1_gray, 127, 255, cv2.THRESH_TRUNC)
res, thresh4 = cv2.threshold(image1_gray, 127, 255, cv2.THRESH_TOZERO)
res, thresh5 = cv2.threshold(image1_gray, 127, 255, cv2.THRESH_TOZERO_INV)
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [image1_gray, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([])
plt.yticks([])
plt.show()

边栏推荐
- OpenVSCode云端IDE加入Rainbond一体化开发体系
- Bayes' law
- 雅思考试自己的复习进度以及方法使用【日更版】
- Call pytorch API to complete linear regression
- The largest 3 same digits in the string of leetcode simple question
- Summary of redis functions
- Understanding of out covariance, in inversion and invariance in kotlin
- It took "7" years to build the robot framework into a micro service
- [untitled]
- Make LIVELINK's initial pose consistent with that of the mobile capture actor
猜你喜欢

Easy to understand SSO

央视太暖心了,手把手教你写HR最喜欢的简历

漏洞复现-Fastjson 反序列化

JS cross browser parsing XML application

Wang Zijian: is the NFT of Tencent magic core worth buying?

电池、电机技术受到很大关注,反而电控技术却很少被提及?
![[quick start of Digital IC Verification] 10. Verilog RTL design must know FIFO](/img/56/82f4533b5bded73df222ef65101a72.png)
[quick start of Digital IC Verification] 10. Verilog RTL design must know FIFO

Avatary的LiveDriver试用体验

Complex network modeling (I)

【踩坑系列】uniapp之h5 跨域的问题
随机推荐
Search for an element in a binary search tree (BST)
JS cross browser parsing XML application
Interactive book delivery - signed version of Oracle DBA work notes
Quick analysis of Intranet penetration helps the foreign trade management industry cope with a variety of challenges
The zblog plug-in supports the plug-in pushed by Baidu Sogou 360
Lua 编程学习笔记
调用 pytorch API完成线性回归
云原生存储解决方案Rook-Ceph与Rainbond结合的实践
opencv学习笔记三——图像平滑/去噪处理
面试题(CAS)
Recursive construction of maximum binary tree
Blob 對象介紹
【数字IC验证快速入门】12、SystemVerilog TestBench(SVTB)入门
Leetcode 187 Repeated DNA sequence (2022.07.06)
It's too true. There's a reason why I haven't been rich
解读创客思维与数学课程的实际运用
【雅思口语】安娜口语学习记录 Part2
Network learning (III) -- highly concurrent socket programming (epoll)
基于Pytorch 框架手动完成线性回归
LeetCode简单题之找到一个数字的 K 美丽值