当前位置:网站首页>微商的差商近似
微商的差商近似
2022-07-27 10:59:00 【char~lie】
有限差分法是用变量离散的、含有有限个未知数的差分方程近似替代连续变量的微分方程,因此首要任务是构建合理的差分格式,使解能够保持原问题的性质,并且具有相当的精度。
为了表明精确度,下面用一元函数做例子,令
y = f ( x ) y=f(x) y=f(x)
在x轴上按h为间隔取点,f(xi+1)可以用Taylor级数表示为:
f ( x i + 1 ) = f ( x i ) + h 1 ! ∂ f ( x ) ∂ x ∣ x = x i + h 2 2 ! ∂ 2 f ( x ) ∂ x 2 ∣ x = x i + . . . f(x_{i+1})=f(x_i)+\frac h {1!}\frac {\partial f(x)} {\partial x}|_{x=x_i}+\frac {h^2} {2!}\frac {\partial^2 f(x)} {\partial x^2}|_{x=x_i}+... f(xi+1)=f(xi)+1!h∂x∂f(x)∣x=xi+2!h2∂x2∂2f(x)∣x=xi+...
f ( x i − 1 ) = f ( x i ) − h 1 ! ∂ f ( x ) ∂ x ∣ x = x i − h 2 2 ! ∂ 2 f ( x ) ∂ x 2 ∣ x = x i − . . . f(x_{i-1})=f(x_i)-\frac h {1!}\frac {\partial f(x)} {\partial x}|_{x=x_i}-\frac {h^2} {2!}\frac {\partial^2 f(x)} {\partial x^2}|_{x=x_i}-... f(xi−1)=f(xi)−1!h∂x∂f(x)∣x=xi−2!h2∂x2∂2f(x)∣x=xi−...
由此可得:
f ( x i + 1 ) − f ( x i ) h = ∂ f ( x ) ∂ x ∣ x = x i + h 2 ! ∂ 2 f ( x ) ∂ x 2 ∣ x = x i + . . = ∂ f ( x ) ∂ x ∣ x = x i + O ( h ) \frac {f(x_{i+1})-f(x_i)}{h}=\frac {\partial f(x)} {\partial x}|_{x=x_i}+\frac {h} {2!}\frac {\partial^2 f(x)} {\partial x^2}|_{x=x_i}+..=\frac {\partial f(x)} {\partial x}|_{x=x_i}+O(h) hf(xi+1)−f(xi)=∂x∂f(x)∣x=xi+2!h∂x2∂2f(x)∣x=xi+..=∂x∂f(x)∣x=xi+O(h)
f ( x i ) − f ( x i − 1 ) h = ∂ f ( x ) ∂ x ∣ x = x i − h 2 ! ∂ 2 f ( x ) ∂ x 2 ∣ x = x i − . . = ∂ f ( x ) ∂ x ∣ x = x i − O ( h ) \frac {f(x_{i})-f(x_{i-1})}{h}=\frac {\partial f(x)} {\partial x}|_{x=x_i}-\frac {h} {2!}\frac {\partial^2 f(x)} {\partial x^2}|_{x=x_i}-..=\frac {\partial f(x)} {\partial x}|_{x=x_i}-O(h) hf(xi)−f(xi−1)=∂x∂f(x)∣x=xi−2!h∂x2∂2f(x)∣x=xi−..=∂x∂f(x)∣x=xi−O(h)
f ( x i + 1 ) − f ( x i ) h ( 1 ) \frac {f(x_{i+1})-f(x_i)}{h} (1) hf(xi+1)−f(xi)(1)
f ( x i ) − f ( x i − 1 ) h ( 2 ) \frac {f(x_{i})-f(x_{i-1})}{h} (2) hf(xi)−f(xi−1)(2)
(1)式叫前向差商,(2)式叫后向差商。
f ( x i + 1 ) − f ( x i − 1 ) 2 h = ∂ f ( x ) ∂ x ∣ x = x i + h 2 3 ! ∂ 3 f ( x ) ∂ x 3 ∣ x = x i + h 4 5 ! ∂ 5 f ( x ) ∂ x 5 ∣ x = x i + . . = ∂ f ( x ) ∂ x ∣ x = x i + O ( h 2 ) \frac {f(x_{i+1})-f(x_{i-1})}{2h}=\frac {\partial f(x)} {\partial x}|_{x=x_i}+\frac {h^2} {3!}\frac {\partial^3 f(x)} {\partial x^3}|_{x=x_i}+\frac {h^4} {5!}\frac {\partial^5 f(x)} {\partial x^5}|_{x=x_i}+..=\frac {\partial f(x)} {\partial x}|_{x=x_i}+O(h^2) 2hf(xi+1)−f(xi−1)=∂x∂f(x)∣x=xi+3!h2∂x3∂3f(x)∣x=xi+5!h4∂x5∂5f(x)∣x=xi+..=∂x∂f(x)∣x=xi+O(h2)
f ( x i + 1 ) − f ( x i − 1 ) 2 h ( 3 ) \frac {f(x_{i+1})-f(x_{i-1})}{2h}(3) 2hf(xi+1)−f(xi−1)(3)
(3)式叫做中心差商,这个是微商的二阶近似。
边栏推荐
- 第12章 泛型
- Modelarts voice detection and text classification
- 微博评论爬虫+可视化
- The C programming language (2nd) -- Notes -- 1.8
- C programming language (2nd Edition) -- Reading Notes -- 1.3
- Pat (Grade B) 2022 summer exam
- 什么是私域流量?
- Find the combination number acwing 888. find the combination number IV
- State compression DP acwing 91. shortest Hamilton path
- First experience of three.js: simulating the growth of a small branch
猜你喜欢

Properties file

PAT(乙级)2022年夏季考试

Wilcoxon rank-sum 和 signed-rank

Remember an experience of using canvas to make the banner streamer effect of Tencent cloud homepage

WGet warning: unable to verify

What is private traffic?

origin如何作一张图中多张子图是柱状图(或其他图)

第12章 泛型

Find the combination number acwing 886. find the combination number II

Moveit2 -- 2. Quick start of moveit in rviz
随机推荐
Caused by:org.gradle.api.internal. plugins . PluginApplicationException: Failed to apply plugin
Find the combination number acwing 886. find the combination number II
Basic use of cmake
力扣——10. 正则表达式匹配
2022 Niuke multi school training (3) a-ancestor topic translation
A deep analysis of the soul of C language -- pointer
微博评论爬虫+可视化
Why choose smart TV?
Error while unzipping file in win10: unable to create symbolic link. You may need to run WinRAR with administrator privileges. The client does not have the required privileges
数字三角形模型 AcWing 1015. 摘花生
(7) Process control
树形DP AcWing 285. 没有上司的舞会
WGet warning: unable to verify
The C programming language (2nd) -- Notes -- 1.9
Analysis of distributed database and cache double write consistency scheme (Reprint)
Chinese remainder theorem acwing 204. strange way of expressing integers
LAN SDN hard core technology insider 24 outlook for the future - RDMA (middle)
Find the combination number acwing 885. find the combination number I
makefile模板
Remember an experience of using canvas to make the banner streamer effect of Tencent cloud homepage