当前位置:网站首页>ARIMA实现(亲测可用)

ARIMA实现(亲测可用)

2022-08-03 10:20:00 狸狸1009

需要jar包Jama-1.0.2.jar,数据:时序数据的值 下载连接
https://download.csdn.net/download/dongyang1124/86265504

package arima;

import java.util.Vector;

public class ARMAModel
{
	private double [] data = {};
	private int p;		//AR阶数
	private int q;		//MA阶数
	
	public ARMAModel(double [] data, int p, int q)
	{
		this.data = data;
		this.p = p;
		this.q = q;
	}
	
	/**
	 * 在ARMA模型中,首先根据原始数据求得AR模型的自回归系数(AR系数)
	 * 利用AR系数与原始数据,求解的残差序列,根据残差序列的自协方差最终求得ARMA中MA系数
	 * @return ar, ma
	 */
	public Vector<double []> solveCoeOfARMA()
	{
		Vector<double []>vec = new Vector<>();
		
		//ARMA模型
		double [] armaCoe = new ARMAMethod().computeARMACoe(this.data, this.p, this.q);
		//AR系数
		double [] arCoe = new double[this.p + 1];
		System.arraycopy(armaCoe, 0, arCoe, 0, arCoe.length);
		//MA系数
		double [] maCoe = new double[this.q + 1];
		System.arraycopy(armaCoe, (this.p + 1), maCoe, 0, maCoe.length);
		
		vec.add(arCoe);
		vec.add(maCoe);
		
		return vec;
	}
}

package arima;

import java.util.Vector;

public class ARModel
{
	private double [] data;
	private int p;
	
	public ARModel(double [] data, int p)
	{
		this.data = data;
		this.p = p;
	}
	
	public Vector<double []> solveCoeOfAR()
	{
		Vector<double []>vec = new Vector<>();
		double [] arCoe = new ARMAMethod().computeARCoe(this.data, this.p);
		
		vec.add(arCoe);
		
		return vec;
	}
}

package arima;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;

public class MainTest {
	
	private static final SimpleDateFormat sdfWhole = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

	public static void main(String args[]) {
		Path path = Paths.get("./data/", "data_20220621.txt");
		File file = path.toFile();
		try (BufferedReader br = new BufferedReader(new InputStreamReader(
				new FileInputStream(file)))) {
			String line = null;
			ArrayList<Double> al = new ArrayList<Double>();
			while ((line = br.readLine()) != null) {
				al.add(Double.parseDouble(line));
			}
			ArrayList<Double> samplingDataList = new ArrayList<>();
			ArrayList<Double> comparisonDataList = new ArrayList<>();
			System.out.println("开始时间"+sdfWhole.format(new Date()));
			for (int i = 0; i < al.size(); i++) {
				if (i < al.size() / 3 * 2) {
					samplingDataList.add(al.get(i));
				} else {
					comparisonDataList.add(al.get(i));
				}
			}
			for (double comData : comparisonDataList) {
				double predict = predect(samplingDataList);
				//System.out.println("Predict value=" + predict);
				samplingDataList.add(predict);
				/*System.out.println("Predict error=" + (predict - comData)
						/ comData * 100 + "%");*/
			}
			System.out.println("结束时间"+sdfWhole.format(new Date()));
		} catch (FileNotFoundException fnfe) {
			fnfe.printStackTrace();
		} catch (IOException ioe) {
			ioe.printStackTrace();
		}
	}

	/**
	 * 获取预测结果的值
	 * 
	 * @param al
	 * @return
	 */
	public static double predect(ArrayList<Double> al) {
		double[] data = null;
		data = al.stream().mapToDouble(i -> i).toArray();
		ARIMAModel arima = new ARIMAModel(data);

		ArrayList<int[]> list = new ArrayList<>();
		int period = 7;
		int modelCnt = 3, cnt = 0;// 通过多次预测的平均值作为预测值
		int[] tmpPredict = new int[modelCnt];
		for (int k = 0; k < modelCnt; ++k) {// 控制通过多少组参数进行计算最终的结果
			int[] bestModel = arima.getARIMAModel(period, list,
					(k == 0) ? false : true);
			if (bestModel.length == 0) {
				tmpPredict[k] = (int) data[data.length - period];
				cnt++;
				break;
			} else {
				int predictDiff = arima.predictValue(bestModel[0],
						bestModel[1], period);
				tmpPredict[k] = arima.aftDeal(predictDiff, period);
				cnt++;
			}
			list.add(bestModel);
		}
		double sumPredict = 0.0;
		for (int k = 0; k < cnt; ++k) {
			sumPredict += (double) tmpPredict[k] / (double) cnt;
		}
		double predict = (double) Math.round(sumPredict);
		return predict;
	}
}

package arima;

import java.util.Vector;

public class MAModel
{
	private double [] data;
	private int q;
	
	public MAModel(double [] data, int q)
	{
		this.data = data;
		this.q = q;
	}
	
	public Vector<double []> solveCoeOfMA()
	{
		Vector<double []>vec = new Vector<>();
		double [] maCoe = new ARMAMethod().computeMACoe(this.data, this.q);
		
		vec.add(maCoe);
		
		return vec;
	}
}

package arima;

import java.util.ArrayList;
import java.util.Random;
import java.util.Vector;

public class ARIMAModel
{
	double [] originalData = {};
	double [] dataFirDiff = {};
	
	Vector<double []>arimaCoe = new Vector<>();
	
	public ARIMAModel()
	{
		
	}
	
	public ARIMAModel(double [] originalData)
	{
		this.originalData = originalData;
	}
	
	public double [] preFirDiff(double [] preData)		//一阶差分(1)
	{	
		double [] tmpData = new double[preData.length - 1];
		for (int i = 0; i < preData.length - 1; ++i)
		{
			tmpData[i] = preData[i + 1] - preData[i];
		}
		return tmpData;
	}
	
	public double [] preSeasonDiff(double [] preData)	//季节性差分(6, 7)
	{	
		double [] tmpData = new double[preData.length - 7];
		for (int i = 0; i < preData.length - 7; ++i)
		{
			tmpData[i] = preData[i + 7] - preData[i];
		}
		return tmpData;
	}
	
	public double [] preDealDiff(int period)
	{
		if (period >= originalData.length - 1)		// 将6也归为季节性差分
		{
			period = 0;
		}
		switch (period)
		{
		case 0:
			return this.originalData;
		case 1:		 
			this.dataFirDiff = this.preFirDiff(this.originalData);
			return this.dataFirDiff;
		default:	
			return preSeasonDiff(originalData);
		}
	}
	
	public int [] getARIMAModel(int period, ArrayList<int []>notModel, boolean needNot)
	{
		double [] data = this.preDealDiff(period);
		
		double minAIC = Double.MAX_VALUE;
		int [] bestModel = new int[3];
		int type = 0;
		Vector<double []>coe = new Vector<>();
		
		// model产生, 即产生相应的p, q参数
		int len = data.length;
		if (len > 5)
		{
			len = 5;
		}
		int size = ((len + 2) * (len + 1)) / 2 - 1;
		int [][] model = new int[size][2];
		int cnt = 0;
		for (int i = 0; i <= len; ++i)
		{
			for (int j = 0; j <= len - i; ++j)
			{
				if (i == 0 && j == 0)
					continue;
				model[cnt][0] = i;
				model[cnt++][1] = j;
			}
		}

		for (int i = 0; i < model.length; ++i)
		{
			// 控制选择的参数
			boolean token = false;
			if (needNot)
			{
				for (int k = 0; k < notModel.size(); ++k)
				{
					if (model[i][0] == notModel.get(k)[0] && model[i][1] == notModel.get(k)[1])
					{
						token = true;
						break;
					}
				}
			}
			if (token)
			{
				continue;
			}
			
			if (model[i][0] == 0)
			{
				MAModel ma = new MAModel(data, model[i][1]);
				coe = ma.solveCoeOfMA();
				type = 1;
			}
			else if (model[i][1] == 0)
			{
				ARModel ar = new ARModel(data, model[i][0]);
				coe = ar.solveCoeOfAR();
				type = 2;
			}
			else
			{
				ARMAModel arma = new ARMAModel(data, model[i][0], model[i][1]);
				coe = arma.solveCoeOfARMA();
				type = 3;
			}				
			double aic = new ARMAMethod().getModelAIC(coe, data, type);
			// 在求解过程中如果阶数选取过长,可能会出现NAN或者无穷大的情况
			if (Double.isFinite(aic) && !Double.isNaN(aic) && aic < minAIC)
			{
				minAIC = aic;
				bestModel[0] = model[i][0];
				bestModel[1] = model[i][1];
				bestModel[2] = (int)Math.round(minAIC);
				this.arimaCoe = coe;
			}
		}
		return bestModel;
	}
	
	public int aftDeal(int predictValue, int period)
	{
		if (period >= originalData.length)
		{
			period = 0;
		}
		
		switch (period)
		{
		case 0:
			return (int)predictValue;
		case 1:
			return (int)(predictValue + originalData[originalData.length - 1]);
		case 2:
		default:	
			return (int)(predictValue + originalData[originalData.length - 7]);
		}
	}
	
	public int predictValue(int p, int q, int period)
	{
		double [] data = this.preDealDiff(period);
		int n = data.length;
		int predict = 0;
		double tmpAR = 0.0, tmpMA = 0.0;
		double [] errData = new double[q + 1];
		
		Random random = new Random();
		
		if (p == 0)
		{
			if(null!=this.arimaCoe&&!this.arimaCoe.isEmpty()){
				double [] maCoe = this.arimaCoe.get(0);
				for(int k = q; k < n; ++k)
				{
					tmpMA = 0;
					for(int i = 1; i <= q; ++i)
					{
						tmpMA += maCoe[i] * errData[i];
					}
					//产生各个时刻的噪声
					for(int j = q; j > 0; --j)
					{
						errData[j] = errData[j - 1];
					}
					errData[0] = random.nextGaussian()*Math.sqrt(maCoe[0]);
				}
				
			}
				predict = (int)(tmpMA); 
			
			
		}
		else if (q == 0)
		{
			double [] arCoe = this.arimaCoe.get(0);
			
			for(int k = p; k < n; ++k)
			{
				tmpAR = 0;
				for(int i = 0; i < p; ++i)
				{
					tmpAR += arCoe[i] * data[k - i - 1];
				}
			}
			predict = (int)(tmpAR);
		}
		else
		{
			double [] arCoe = this.arimaCoe.get(0);
			double [] maCoe = this.arimaCoe.get(1);
			
			for(int k = p; k < n; ++k)
			{
				tmpAR = 0;
				tmpMA = 0;
				for(int i = 0; i < p; ++i)
				{
					tmpAR += arCoe[i] * data[k- i - 1];
				}
				for(int i = 1; i <= q; ++i)
				{
					tmpMA += maCoe[i] * errData[i];
				}
			
				//产生各个时刻的噪声
				for(int j = q; j > 0; --j)
				{
					errData[j] = errData[j-1];
				}
				
				errData[0] = random.nextGaussian() * Math.sqrt(maCoe[0]);
			}
			
			predict = (int)(tmpAR + tmpMA);
		}
		
		return predict;
	}
}

package arima;

import java.util.Random;
import java.util.Vector;

import Jama.Matrix;

public class ARMAMethod
{
	public ARMAMethod()
	{
		
	}
	
	/**
	 * @param originalData
	 * @return 均值
	 */
	public double avgData(double [] originalData)
	{
		return this.sumData(originalData) / originalData.length;
	}
	
	/**
	 * @param originalData
	 * @return 求和
	 */
	public double sumData(double [] originalData)
	{
		double sum = 0.0;
		
		for (int i = 0; i < originalData.length; ++i)
		{
			sum += originalData[i];
		}
		return sum;
	}
	
	/**
	 * 计算标准差 sigma = sqrt(var);
	 * @param originalData
	 * @return 标准差
	 */
	public double stdErrData(double [] originalData)
	{
		return Math.sqrt(this.varErrData(originalData));
	}
	
	
	/**
	 * 计算方差 var = sum(x - mu) ^2 / N;
	 * @param originalData
	 * @return 方差
	 */
	public double varErrData(double [] originalData)
	{
		if (originalData.length <= 1)
			return 0.0;
		
		double var = 0.0;
		double mu = this.avgData(originalData);
		
		for (int i = 0; i < originalData.length; ++i)
		{
			var += (originalData[i] - mu) * (originalData[i] - mu);
		}
		var /= (originalData.length - 1);		//方差的无偏估计
		
		return var;
	}
	
	/**
	 * 计算自相关函数(系数) rou(k) = C(k) / C(0);
	 * 其中 C(k) = sum((x(t) - mu)*(x(t - k) - mu)) / (N - k),
	 * C(0) = var =  sum(x(t) - mu) ^2 / N;
	 * @param originalData
	 * @param order
	 * @return 自相关函数(rou(k))
	 */
	public double [] autoCorrData(double [] originalData, int order)
	{
		double [] autoCov = this.autoCovData(originalData, order);
		double [] autoCorr = new double[order + 1];		//默认初始化为0
		double var = this.varErrData(originalData);
		
		if (var != 0)
		{
			for (int i = 0; i < autoCorr.length; ++i)
			{
				autoCorr[i] = autoCov[i] / var;
			}
		}
		
		return autoCorr;
	}
	
	/**
	 * @param dataFir
	 * @param dataSec
	 * @return 皮尔逊相关系数(互相关)
	 */
	public double mutalCorr(double [] dataFir, double [] dataSec)
	{
		double sumX = 0.0;
		double sumY = 0.0;
		double sumXY = 0.0;
		double sumXSq = 0.0;
		double sumYSq = 0.0;
		int len = 0;
		
		if (dataFir.length != dataSec.length)
		{
			len = Math.min(dataFir.length, dataSec.length);
		}
		else
		{
			len = dataFir.length;
		}
		for (int i = 0; i < len; ++i)
		{
			sumX += dataFir[i];
			sumY += dataSec[i];
			sumXY += dataFir[i] * dataSec[i];
			sumXSq += dataFir[i] * dataFir[i];
			sumYSq += dataSec[i] * dataSec[i];
		}		
		
		double numerator = sumXY - sumX * sumY / len;
		double denominator = Math.sqrt((sumXSq - sumX * sumX / len) * (sumYSq - sumY * sumY / len));
		
		if (denominator == 0)
		{
			return 0.0;
		}
		
		return numerator/ denominator;
	}
	
	
	/**
	 * @param data
	 * @return		互相关矩阵
	 */
	public double [][] computeMutalCorrMatrix(double [][] data)
	{
		double [][] result = new double[data.length][data.length];
		for (int i = 0; i < data.length; ++i)
		{
			for (int j = 0; j < data.length; ++j)
			{
				result[i][j] = this.mutalCorr(data[i], data[j]);
			}
		}
		
		return result;
	}
	
	/**
	 * 计算自协方差,C(k) = sum((x(t) - mu)*(x(t - k) - mu)) / (N - k);
	 * @param originalData
	 * @param order
	 * @return 自协方差(gama(k))-->认为是自相关系数
	 */
	public double [] autoCovData(double [] originalData, int order)
	{
		double mu = this.avgData(originalData);
		double [] autoCov = new double[order + 1];
		
		for (int i = 0; i <= order; ++i)
		{
			autoCov[i] = 0.0;
			for (int j = 0; j < originalData.length - i; ++j)
			{
				autoCov[i] += (originalData[i + j] - mu) * (originalData[j] - mu);
			}
			autoCov[i] /= (originalData.length - i);
		}
		return autoCov;
	}
	

	
	/**
	 * @param vec		模型的系数
	 * @param data		数据
	 * @param type		选定的模型
	 * @return
	 */
	public double getModelAIC(Vector<double []>vec, double [] data, int type)
	{
		int n = data.length;
		int p = 0, q = 0;
		double tmpAR = 0.0, tmpMA = 0.0;
		double sumErr = 0.0;
		Random random = new Random();
		
		/* MA */	
		if (type == 1)
		{
			double [] maCoe = vec.get(0);
			q = maCoe.length;
			double [] errData = new double[q];
			
			for (int i = q - 1; i < n; ++i)
			{
				tmpMA = 0.0;
				for (int j = 1; j < q; ++j)
				{
					tmpMA += maCoe[j] * errData[j];
				}
				
				for (int j = q - 1; j > 0; --j)
				{
					errData[j] = errData[j - 1];
				}
				errData[0] = random.nextGaussian() * Math.sqrt(maCoe[0]);
				sumErr += (data[i] - tmpMA) * (data[i] - tmpMA);
			}
		    // return Math.log(sumErr) + (q + 1) * 2 / n;
			return (n - (q - 1)) * Math.log(sumErr / (n - (q - 1))) + (q + 1) * 2;
			// return  (n-(q-1))*Math.log(sumErr/(n-(q-1)))+(q)*Math.log(n-(q-1));		//AIC 最小二乘估计
		}
		/* AR */
		else if (type == 2)
		{
			double [] arCoe = vec.get(0);
			p = arCoe.length;
			
			for (int i = p - 1; i < n; ++i)
			{
				tmpAR = 0.0;
				for (int j = 0; j < p - 1; ++j)
				{
					tmpAR += arCoe[j] * data[i - j - 1];
				}
				sumErr += (data[i] - tmpAR) * (data[i] - tmpAR);
			}
//			return Math.log(sumErr) + (p + 1) * 2 / n;
			return (n - (p - 1)) * Math.log(sumErr / (n - (p - 1))) + (p + 1) * 2;
			// return (n-(p-1))*Math.log(sumErr/(n-(p-1)))+(p)*Math.log(n-(p-1));		//AIC 最小二乘估计
		}
		/* ARMA */
		else
		{
			double [] arCoe = vec.get(0);
			double [] maCoe = vec.get(1);
			p = arCoe.length;
			q = maCoe.length;
			double [] errData = new double[q];
			
			for (int i = p - 1; i < n; ++i)
			{
				tmpAR = 0.0;
				for (int j = 0; j < p - 1; ++j)
				{
					tmpAR += arCoe[j] * data[i - j - 1];
				}
				tmpMA = 0.0;
				for (int j = 1; j < q; ++j)
				{
					tmpMA += maCoe[j] * errData[j];
				}
				
				for (int j = q - 1; j > 0; --j)
				{
					errData[j] = errData[j - 1];
				}
				errData[0] = random.nextGaussian() * Math.sqrt(maCoe[0]);
				
				sumErr += (data[i] - tmpAR - tmpMA) * (data[i] - tmpAR - tmpMA);
			}
//			return Math.log(sumErr) + (q + p + 1) * 2 / n;
			return (n - (q + p - 1)) * Math.log(sumErr / (n - (q + p - 1))) + (p + q) * 2;
			// return (n-(p-1))*Math.log(sumErr/(n-(p-1)))+(p+q-1)*Math.log(n-(p-1));		//AIC 最小二乘估计
		}
	}

	// Y-W方程求解
		/**
		 * @param garma	代表的是数据的协方差
		 * @return 返回经由Y-W方程求解的结果,其中最后数组的最后一个元素存储的是模型中的噪声方差
		 */
	public double [] YWSolve(double [] garma)
	{
		int order = garma.length - 1;
		double [] garmaPart = new double[order];
		System.arraycopy(garma, 1, garmaPart, 0, order);
		
		// 将协方差转换为矩阵的形式
		double [][] garmaArray = new double[order][order];
		for (int i = 0; i < order; ++i)
		{
			// 对角线
			garmaArray[i][i] = garma[0];
			
			//下三角
			int subIndex = i;
			for (int j = 0; j < i; ++j)
			{
				garmaArray[i][j] = garma[subIndex--];
			}
			
			//上三角
			int topIndex = i;
			for (int j = i + 1; j < order; ++j)
			{
				garmaArray[i][j] = garma[++topIndex];
			}
		}
		
		/* 调用了juma包,其实现了大部分对矩阵的操作 */
		/* 可能会存在矩阵不可逆的情况,在矩阵不可逆时可以通过将对角线元素全部增加1e-6做修正 */
		Matrix garmaMatrix = new Matrix(garmaArray);				
		Matrix garmaMatrixInverse = garmaMatrix.inverse();
		Matrix autoReg = garmaMatrixInverse.times(new Matrix(garmaPart, order));
		
		double [] result = new double[autoReg.getRowDimension() + 1];
		for (int i = 0; i < autoReg.getRowDimension(); ++i)
		{
			result[i] = autoReg.get(i, 0);
		}
		
		double sum = 0.0;
		for (int i = 0; i < order; ++i)
		{
			sum += result[i] * garma[i];
		}
		result[result.length - 1] = garma[0] - sum;
		return result;
	}

	// Levinson 方法求解
	
		/**
		 * @param garma  代表的是数据的协方差
		 * @return	返回结果的第一行元素代表的是在迭代过程中的方差,
		 * 其余的元素代表的是迭代过程中存储的系数
		 */
	public double [][] LevinsonSolve(double [] garma)
	{
		int order = garma.length - 1;
		double [][] result = new double[order + 1][order + 1];
		double [] sigmaSq = new double[order + 1];
		
		sigmaSq[0] = garma[0];
		result[1][1] = garma[1] / sigmaSq[0];
		sigmaSq[1] = sigmaSq[0] * (1.0 - result[1][1] * result[1][1]);
		for (int k = 1; k < order; ++k)
		{
			double sumTop = 0.0;
			double sumSub = 0.0;
			for (int j = 1; j <= k; ++j)
			{
				sumTop += garma[k + 1 - j] * result[k][j];
				sumSub += garma[j] * result[k][j];
			}
			result[k + 1][k + 1] = (garma[k + 1] - sumTop) / (garma[0] - sumSub);
			for (int j = 1; j <= k; ++j)
			{
				result[k + 1][j] = result[k][j] - result[k + 1][k + 1] * result[k][k + 1 - j];
			} 
			sigmaSq[k + 1] = sigmaSq[k] * (1.0 - result[k + 1][k + 1] * result[k + 1][k + 1]);
		}
		result[0] = sigmaSq;
		
		return result;
	}

	// 求解AR(p)的系数
	
	/**
	 * @param originalData	原始数据
	 * @param p		模型的阶数
	 * @return		AR模型的系数
	 */
	public double [] computeARCoe(double [] originalData, int p)
	{
		double [] garma = this.autoCovData(originalData, p);		//p+1
		
		double [][] result = this.LevinsonSolve(garma);		//(p + 1) * (p + 1)
		double [] ARCoe = new double[p + 1];
		for (int i = 0; i < p; ++i)
		{
			ARCoe[i] = result[p][i + 1];
		}
		ARCoe[p] = result[0][p];		//噪声参数
		
//		 return this.YWSolve(garma);
		return ARCoe;
	}

	// 求解MA(q)的系数
	
	/**
	 * @param originalData   原始数据
	 * @param q			模型阶数
	 * @return			MA系数
	 */
	public double [] computeMACoe(double [] originalData, int q)
	{
		// 确定最佳的p
//		int p = 0;
//		double minAIC = Double.MAX_VALUE;
//		int len = originalData.length;
//		for (int i = 1; i < len; ++i)
//		{
//			double [] garma = this.autoCovData(originalData, i);
//			double [][] result = this.LevinsonSolve(garma);
//			
//			double [] ARCoe = new double[i + 1];
//			for (int k = 0; k < i; ++k)
//			{
//				ARCoe[k] = result[i][k + 1];
//			}
//			ARCoe[i] = result[0][i];
			double [] ARCoe = this.YWSolve(garma);
//			
//			Vector<double []> vec = new Vector<>();
//			vec.add(ARCoe);
//			double aic = this.getModelAIC(vec, originalData, 2);
//			if (aic < minAIC)
//			{
//				minAIC = aic;
//				p = i;
//			}	
//		}
		
		int p = (int)Math.log(originalData.length);
		
//		System.out.println("The best p is " + p);
		// 求取系数
		double [] bestGarma = this.autoCovData(originalData, p);
		double [][] bestResult = this.LevinsonSolve(bestGarma);
		
		double [] alpha = new double[p + 1];
		alpha[0] = -1;
		for (int i = 1; i <= p; ++i)
		{
			alpha[i] = bestResult[p][i];
		}

//		double [] result = this.YWSolve(bestGarma);
//		double [] alpha = new double[p + 1];
//		alpha[0] = -1;
//		for (int i = 1; i <= p; ++i)
//		{
//			alpha[i] = result[i - 1];
//		}
		double [] paraGarma = new double[q + 1];
		for (int k = 0; k <= q; ++k)
		{
			double sum = 0.0;
			for (int j = 0; j <= p - k; ++j)
			{
				sum += alpha[j] * alpha[k + j];
			}
			paraGarma[k] = sum / bestResult[0][p];
		}
		
		double [][] tmp = this.LevinsonSolve(paraGarma);
		double [] MACoe = new double[q + 1];
		for (int i = 1; i < MACoe.length; ++i)
		{
			MACoe[i] = -tmp[q][i];
		}
		MACoe[0] = 1 / tmp[0][q];		//噪声参数
		
//		double [] tmp = this.YWSolve(paraGarma);
//		double [] MACoe = new double[q + 1];
//		System.arraycopy(tmp, 0, MACoe, 1, tmp.length - 1);
//		MACoe[0] = tmp[tmp.length - 1];
		
		return MACoe;
	}

	// 求解ARMA(p, q)的系数
	
	/**
	 * @param originalData		原始数据
	 * @param p			AR模型阶数
	 * @param q			MA模型阶数
	 * @return			ARMA模型系数
	 */
	public double [] computeARMACoe(double [] originalData, int p, int q)
	{
		double [] allGarma = this.autoCovData(originalData, p + q);
		double [] garma = new double[p + 1];
		for (int i = 0; i < garma.length; ++i)
		{
			garma[i] = allGarma[q + i];
		}
		double [][] arResult = this.LevinsonSolve(garma);
		
		// AR
		double [] ARCoe = new double[p + 1];
		for (int i = 0; i < p; ++i)
		{
			ARCoe[i] = arResult[p][i + 1];
		}
		ARCoe[p] = arResult[0][p];
//		double [] ARCoe = this.YWSolve(garma);
		
		// MA
		double [] alpha = new double[p + 1];
		alpha[0] = -1;
		for (int i = 1; i <= p; ++i)
		{
			alpha[i] = ARCoe[i - 1];
		}
		
		double [] paraGarma = new double[q + 1];
		for (int k = 0; k <= q; ++k)
		{
			double sum = 0.0;
			for (int i = 0; i <= p; ++i)
			{
				for (int j = 0; j <= p; ++j)
				{
					sum += alpha[i] * alpha[j] * allGarma[Math.abs(k + i - j)];
				}
			}
			paraGarma[k] = sum;
		}
		double [][] maResult = this.LevinsonSolve(paraGarma);
		double [] MACoe = new double[q + 1];
		for (int i = 1; i <= q; ++i)
		{
			MACoe[i] = maResult[q][i];
		}
		MACoe[0] = maResult[0][q];
		
//		double [] tmp = this.YWSolve(paraGarma);
//		double [] MACoe = new double[q + 1];
//		System.arraycopy(tmp, 0, MACoe, 1, tmp.length - 1);
//		MACoe[0] = tmp[tmp.length - 1];
		
		double [] ARMACoe = new double[p + q + 2];
		for (int i = 0; i < ARMACoe.length; ++i)
		{
			if (i < ARCoe.length)
			{
				ARMACoe[i] = ARCoe[i];
			}
			else
			{
				ARMACoe[i] = MACoe[i - ARCoe.length];
			}
		}
		return ARMACoe;
	}
}

原网站

版权声明
本文为[狸狸1009]所创,转载请带上原文链接,感谢
https://blog.csdn.net/dongyang1124/article/details/126051334