当前位置:网站首页>CNN--Introduction to each layer
CNN--Introduction to each layer
2022-07-31 07:46:00 【奇迹的粉丝】
卷积层Convolutional
给定卷积核,Where the convolution kernel is applied to the corresponding dimension of the input image features,计算乘积,The figure below shows the step sizestride=1为例,Get the final output layer features.


假设输入大小为(H,W),滤波器大小为(FH,FW),输出大小为(OH,OW),填充padding为P,步幅stride为S
O H = H + 2 P − F H S + 1 O W = W + 2 P − F W S + 1 OH=\frac{H+2P-FH}{S}+1\\ OW=\frac{W+2P-FW}{S}+1 OH=SH+2P−FH+1OW=SW+2P−FW+1
For multi-channel convolution calculations,Similar to the single channel calculation method,Just add the calculated values for each channel at the end


Convolution operation for multiple convolution kernels:


填充Padding
after each convolution,The output dimension is reduced,according to the size of the input image,The dimensions of the output image may become too small after several rounds of convolution,At the same time, the pixels on the edge are less than the pixels in the middle,This also ignores part of the image data,为了解决这个问题,PaddingBy padding data at the edges,To achieve the effect of keeping the input and output image dimensions consistent.

池化层Pooling
Pooling layer to reduce the size of the special row data,And make some feature detection more robust.如果使用一个 4 × 4 4\times4 4×4的矩阵,Max池化层和MeanThe result after the pooling layer is processed separately is shown below,这个过程很简单.在示例中,filter是2×2,stride为 2,So divide the input into four parts 2 × 2 2\times2 2×2 的子区域,Max和MeanThen, the maximum and mean values of the corresponding sub-regions are output respectively
的子区域,Max和MeanThen, the maximum and mean values of the corresponding sub-regions are output respectively
The above picture is from《深度学习入门:基于Python的理论与实现》and web images
边栏推荐
- 'vite' is not an internal or external command, nor is it a runnable program or batch file.
- Gradle remove dependency demo
- Bulk free text translation
- 文件 - 05 下载文件:根据文件Id下载文件
- DAY18:XSS 漏洞
- 2022.07.24_每日一题
- Super detailed mysql database installation guide
- DirectExchange switch simple introduction demo
- 从入门到一位合格的爬虫师,这几点很重要
- mysql的建表语句_三种常用的MySQL建表语句
猜你喜欢

Zero-Shot Learning & Domain-aware Visual Bias Eliminating for Generalized Zero-Shot Learning

关于求反三角函数的三角函数值

Obtaining server and client information

什么是半波整流器?半波整流器的使用方法

Fund investment advisory business

我开发了一个利用 Bun 执行 .ts / .js 文件的 VS Code 插件

2022.07.20_每日一题

基金投顾业务

【Go】Go 语言切片(Slice)

【C语言项目合集】这十个入门必备练手项目,让C语言对你来说不再难学!
随机推荐
2022.07.15_每日一题
mysql的建表语句_三种常用的MySQL建表语句
基于交替迭代法的交直流混合系统潮流计算matlab程序iEEE9节点系统算例
2022.07.13_Daily Question
2022.07.29_Daily Question
2022.07.22_每日一题
2022.07.26_每日一题
Web浏览器工作流程解析
单点登录 思维导图
'vite' is not an internal or external command, nor is it a runnable program or batch file.
Tasks and task switching
手把手教你开发微信小程序自定义底部导航栏
leetcode 406. Queue Reconstruction by Height
Leetcode952. Calculate maximum component size by common factor
Chapter 17: go back to find the entrance to the specified traverse, "ma bu" or horse stance just look greedy, no back to search traversal, "ma bu" or horse stance just look recursive search NXM board
链表实现及任务调度
Jobject 使用
什么是半波整流器?半波整流器的使用方法
The Perfect Guide|How to use ODBC for Agentless Oracle Database Monitoring?
【科普向】5G核心网架构和关键技术
