当前位置:网站首页>CNN--Introduction to each layer
CNN--Introduction to each layer
2022-07-31 07:46:00 【奇迹的粉丝】
卷积层Convolutional
给定卷积核,Where the convolution kernel is applied to the corresponding dimension of the input image features,计算乘积,The figure below shows the step sizestride=1为例,Get the final output layer features.


假设输入大小为(H,W),滤波器大小为(FH,FW),输出大小为(OH,OW),填充padding为P,步幅stride为S
O H = H + 2 P − F H S + 1 O W = W + 2 P − F W S + 1 OH=\frac{H+2P-FH}{S}+1\\ OW=\frac{W+2P-FW}{S}+1 OH=SH+2P−FH+1OW=SW+2P−FW+1
For multi-channel convolution calculations,Similar to the single channel calculation method,Just add the calculated values for each channel at the end


Convolution operation for multiple convolution kernels:


填充Padding
after each convolution,The output dimension is reduced,according to the size of the input image,The dimensions of the output image may become too small after several rounds of convolution,At the same time, the pixels on the edge are less than the pixels in the middle,This also ignores part of the image data,为了解决这个问题,PaddingBy padding data at the edges,To achieve the effect of keeping the input and output image dimensions consistent.

池化层Pooling
Pooling layer to reduce the size of the special row data,And make some feature detection more robust.如果使用一个 4 × 4 4\times4 4×4的矩阵,Max池化层和MeanThe result after the pooling layer is processed separately is shown below,这个过程很简单.在示例中,filter是2×2,stride为 2,So divide the input into four parts 2 × 2 2\times2 2×2 的子区域,Max和MeanThen, the maximum and mean values of the corresponding sub-regions are output respectively
的子区域,Max和MeanThen, the maximum and mean values of the corresponding sub-regions are output respectively
The above picture is from《深度学习入门:基于Python的理论与实现》and web images
边栏推荐
- 强化学习科研知识必备(数据库、期刊、会议、牛人)
- 2022.07.13_Daily Question
- 文件 - 05 下载文件:根据文件Id下载文件
- Install the gstreamer development dependency library to the project sysroot directory
- 【解决】npm ERR A complete log of this run can be found in npm ERR
- sort函数(快速排列)的使用方法
- 2022.07.29_Daily Question
- 双倍数据速率同步动态随机存储器(Double Data Rate Synchronous Dynamic Random Access Memory, DDR SDRAM)- 逻辑描述部分
- Fund investment advisory business
- Detailed explanation of js prototype
猜你喜欢

Postgresql source code learning (33) - transaction log ⑨ - see the overall process of log writing from the insert record

03-SDRAM: Write operation (burst)

【第四章】详解Feign的实现原理

Financial leasing business

【 TA - frost Wolf _may - "one hundred plan" 】 art 2.3 hard surface

LeetCode:952. 按公因数计算最大组件大小【欧拉筛 + 并查集】

Zabbix6.2 Surprise Release!Especially optimize the performance of medium and large environment deployment!

'vite' is not an internal or external command, nor is it a runnable program or batch file.

基于LSTM的诗词生成

Analysis of the principle and implementation of waterfall flow layout
随机推荐
van-uploader uploads images, and cannot preview the image using base64 echo
The Perfect Guide|How to use ODBC for Agentless Oracle Database Monitoring?
【C语言项目合集】这十个入门必备练手项目,让C语言对你来说不再难学!
2022.07.12_每日一题
电脑开机密码怎么设置?如何给你的电脑加上“安全锁”
强化学习科研知识必备(数据库、期刊、会议、牛人)
03-SDRAM: Write operation (burst)
从 Google 离职,前Go 语言负责人跳槽小公司
Linked list implementation and task scheduling
2022.07.14_Daily Question
One of the small practical projects - food alliance ordering system
tidyverse笔记——tidyr包
【Go语言入门】一文搞懂Go语言的最新依赖管理:go mod的使用
【并发编程】ReentrantLock的lock()方法源码分析
2022.07.15_每日一题
interrupt and pendSV
[PSQL] SQL基础教程读书笔记(Chapter1-4)
LeetCode:952. 按公因数计算最大组件大小【欧拉筛 + 并查集】
深度学习通信领域相关经典论文、数据集整理分享
Obtaining server and client information
