当前位置:网站首页>【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
2022-07-25 13:08:00 【chad_ lee】
Learning Explicit User Interest Boundary for Recommendation (WWW’22)

Pointwise loss:
L = ∑ ( u , x ) ∈ T ψ ( s ( u , x ) , l ( u , x ) ) \mathcal{L}=\sum_{(u, x) \in \mathcal{T}} \psi(s(u, x), l(u, x)) L=(u,x)∈T∑ψ(s(u,x),l(u,x))
Pairwise loss:
L = ∑ ( u , p ) ∈ I ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − s ( u , p ) ) \mathcal{L}=\sum_{(u, p) \in I} \sum_{(u, n) \notin I} \phi(s(u, n)-s(u, p)) L=(u,p)∈I∑(u,n)∈/I∑ϕ(s(u,n)−s(u,p))
Mixed loss :
L = ∑ ( u , p ) ∈ I ϕ ( b u − s ( u , p ) ) ⏟ L p + α ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − b u ) ⏟ L n \mathcal{L}=\underbrace{\sum_{(u, p) \in \mathcal{I}} \phi\left(b_{u}-s(u, p)\right)}_{L_{p}}+\underbrace{\alpha \sum_{(u, n) \notin I} \phi\left(s(u, n)-b_{u}\right)}_{L_{n}} L=Lp(u,p)∈I∑ϕ(bu−s(u,p))+Lnα(u,n)∈/I∑ϕ(s(u,n)−bu)
b u = W T P u , ϕ : M a r g i n L o s s or L n S i g m o i d b_{u}=W^{T} P_{u}, \ \ \phi:\ MarginLoss or LnSigmoid bu=WTPu, ϕ: MarginLoss or LnSigmoid

It can also be regarded as a kind of debias Methods , b u b_{u} bu It's a scalar , And the only user embedding of , So for popularity bias Big users ,s Often very large , At this time, set a higher limit for him margin value , It is equivalent to setting a dynamic margin loss.
There's another possibility , Optimize positive samples loss L p L_p Lp, Will increase the positive sample score s ( u , p ) s(u, p) s(u,p), Reduce the boundary fraction b u b_u bu, therefore b u b_u bu stay loss It can be seen as a kind of high-frequency user Penalty regularization of .
边栏推荐
- [Video] visual interpretation of Markov chain principle and Mrs example of R language region conversion | data sharing
- 程序员奶爸自制AI喂奶检测仪,预判宝宝饿点,不让哭声影响老婆睡眠
- Ministry of Public Security: the international community generally believes that China is one of the safest countries in the world
- ECCV 2022 | climb to the top semantickitti! Semantic segmentation of LIDAR point cloud based on two-dimensional prior assistance
- 手写一个博客平台~第一天
- 【OpenCV 例程 300篇】239. Harris 角点检测之精确定位(cornerSubPix)
- Mysql 远程连接权限错误1045问题
- [operation and maintenance, implementation of high-quality products] interview skills for technical positions with a monthly salary of 10k+
- 零基础学习CANoe Panel(15)—— 文本输出(CAPL Output View )
- massCode 一款优秀的开源代码片段管理器
猜你喜欢

零基础学习CANoe Panel(12)—— 进度条(Progress Bar)
![[today in history] July 25: IBM obtained the first patent; Verizon acquires Yahoo; Amazon releases fire phone](/img/f6/d422367483542a0351923f2df27347.jpg)
[today in history] July 25: IBM obtained the first patent; Verizon acquires Yahoo; Amazon releases fire phone
![Detailed explanation of switch link aggregation [Huawei ENSP]](/img/34/dff118b52404e35f74a8f06b2517be.png)
Detailed explanation of switch link aggregation [Huawei ENSP]

Machine learning strong foundation program 0-4: popular understanding of Occam razor and no free lunch theorem

R language GLM generalized linear model: logistic regression, Poisson regression fitting mouse clinical trial data (dose and response) examples and self-test questions

How to understand metrics in keras

Selenium use -- installation and testing

The programmer's father made his own AI breast feeding detector to predict that the baby is hungry and not let the crying affect his wife's sleep

卷积神经网络模型之——VGG-16网络结构与代码实现

Zero basic learning canoe panel (16) -- clock control/panel control/start stop control/tab control
随机推荐
需求规格说明书模板
B树和B+树
Mysql 远程连接权限错误1045问题
卷积神经网络模型之——LeNet网络结构与代码实现
Handwriting a blog platform ~ first day
工业互联网的内涵及其应用
Zero basic learning canoe panel (13) -- trackbar
JS sorts according to the attributes of the elements in the array
Connotation and application of industrial Internet
cv2.resize函数报错:error: (-215:Assertion failed) func != 0 in function ‘cv::hal::resize‘
【AI4Code】《CodeBERT: A Pre-Trained Model for Programming and Natural Languages》 EMNLP 2020
Seven lines of code made station B crash for three hours, but "a scheming 0"
I want to ask whether DMS has the function of regularly backing up a database?
手写一个博客平台~第一天
[CSDN year-end summary] end and start, always on the way - "2021 summary of" 1+1= Wang "
Shell常用脚本:判断远程主机的文件是否存在
迁移PaloAlto HA高可用防火墙到Panorama
【AI4Code】《Contrastive Code Representation Learning》 (EMNLP 2021)
word样式和多级列表设置技巧(二)
ECCV 2022 | climb to the top semantickitti! Semantic segmentation of LIDAR point cloud based on two-dimensional prior assistance