当前位置:网站首页>【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
2022-07-25 13:08:00 【chad_ lee】
Learning Explicit User Interest Boundary for Recommendation (WWW’22)

Pointwise loss:
L = ∑ ( u , x ) ∈ T ψ ( s ( u , x ) , l ( u , x ) ) \mathcal{L}=\sum_{(u, x) \in \mathcal{T}} \psi(s(u, x), l(u, x)) L=(u,x)∈T∑ψ(s(u,x),l(u,x))
Pairwise loss:
L = ∑ ( u , p ) ∈ I ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − s ( u , p ) ) \mathcal{L}=\sum_{(u, p) \in I} \sum_{(u, n) \notin I} \phi(s(u, n)-s(u, p)) L=(u,p)∈I∑(u,n)∈/I∑ϕ(s(u,n)−s(u,p))
Mixed loss :
L = ∑ ( u , p ) ∈ I ϕ ( b u − s ( u , p ) ) ⏟ L p + α ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − b u ) ⏟ L n \mathcal{L}=\underbrace{\sum_{(u, p) \in \mathcal{I}} \phi\left(b_{u}-s(u, p)\right)}_{L_{p}}+\underbrace{\alpha \sum_{(u, n) \notin I} \phi\left(s(u, n)-b_{u}\right)}_{L_{n}} L=Lp(u,p)∈I∑ϕ(bu−s(u,p))+Lnα(u,n)∈/I∑ϕ(s(u,n)−bu)
b u = W T P u , ϕ : M a r g i n L o s s or L n S i g m o i d b_{u}=W^{T} P_{u}, \ \ \phi:\ MarginLoss or LnSigmoid bu=WTPu, ϕ: MarginLoss or LnSigmoid

It can also be regarded as a kind of debias Methods , b u b_{u} bu It's a scalar , And the only user embedding of , So for popularity bias Big users ,s Often very large , At this time, set a higher limit for him margin value , It is equivalent to setting a dynamic margin loss.
There's another possibility , Optimize positive samples loss L p L_p Lp, Will increase the positive sample score s ( u , p ) s(u, p) s(u,p), Reduce the boundary fraction b u b_u bu, therefore b u b_u bu stay loss It can be seen as a kind of high-frequency user Penalty regularization of .
边栏推荐
- [problem solving] ibatis.binding BindingException: Type interface xxDao is not known to the MapperRegistry.
- [operation and maintenance, implementation of high-quality products] interview skills for technical positions with a monthly salary of 10k+
- 【AI4Code】《Unified Pre-training for Program Understanding and Generation》 NAACL 2021
- Zero basic learning canoe panel (15) -- CAPL output view
- R language GLM generalized linear model: logistic regression, Poisson regression fitting mouse clinical trial data (dose and response) examples and self-test questions
- 使用vsftpd服务传输文件(匿名用户认证、本地用户认证、虚拟用户认证)
- go : gin 自定义日志输出格式
- 机器学习强基计划0-4:通俗理解奥卡姆剃刀与没有免费午餐定理
- 深度学习的训练、预测过程详解【以LeNet模型和CIFAR10数据集为例】
- Common operations for Yum and VIM
猜你喜欢

卷积神经网络模型之——AlexNet网络结构与代码实现

零基础学习CANoe Panel(15)—— 文本输出(CAPL Output View )

Docekr learning - MySQL 8 master-slave replication setup deployment

yum和vim须掌握的常用操作

深度学习的训练、预测过程详解【以LeNet模型和CIFAR10数据集为例】

Moving Chinese figure liushenglan

Selenium use -- installation and testing

Atcoder beginer contest 261 f / / tree array
![[problem solving] org.apache.ibatis.exceptions PersistenceException: Error building SqlSession. 1-byte word of UTF-8 sequence](/img/fd/245306273e464c04f3292132fbfa2f.png)
[problem solving] org.apache.ibatis.exceptions PersistenceException: Error building SqlSession. 1-byte word of UTF-8 sequence
![[review SSM framework series] 15 - Summary of SSM series blog posts [SSM kill]](/img/fb/6ca8e0eb57c76c515e2aae68e9e549.png)
[review SSM framework series] 15 - Summary of SSM series blog posts [SSM kill]
随机推荐
cv2.resize函数报错:error: (-215:Assertion failed) func != 0 in function ‘cv::hal::resize‘
OAuth, JWT, oidc, you mess me up
Mlx90640 infrared thermal imager temperature sensor module development notes (V)
Common operations for Yum and VIM
[ai4code final chapter] alphacode: competition level code generation with alphacode (deepmind)
录制和剪辑视频,如何解决占用空间过大的问题?
Moving Chinese figure liushenglan
Use vsftpd service to transfer files (anonymous user authentication, local user authentication, virtual user authentication)
Word style and multi-level list setting skills (II)
若依如何实现用户免密登录配置方法?
Convolutional neural network model -- googlenet network structure and code implementation
[300 opencv routines] 239. accurate positioning of Harris corner detection (cornersubpix)
Docker learning - redis cluster -3 master and 3 slave - capacity expansion - capacity reduction building
web安全入门-UDP测试与防御
Substance designer 2021 software installation package download and installation tutorial
[review SSM framework series] 15 - Summary of SSM series blog posts [SSM kill]
Simple understanding of flow
业务可视化-让你的流程图'Run'起来(3.分支选择&跨语言分布式运行节点)
B tree and b+ tree
Shell common script: judge whether the file of the remote host exists