当前位置:网站首页>2021 soft exam intermediate pass
2021 soft exam intermediate pass
2022-07-30 07:13:00 【Yin Pinghua】

Although the score is not high, it is enough to prove that hard work always pays off.
Personally, in terms of the intermediate level of the soft exam, the pass rate of software designers over the years is around 30%. According to the pass rate, it can be judged that the test is not very difficult.
The software designer exam belongs to the intermediate qualification of the soft test. The software designer is less difficult than the advanced soft test, but it is more difficult than the primary soft test.
The software designer exam is usually based on the exam syllabus, so candidates should master the content of the software designer exam syllabus.Software designers include two exam subjects: basic knowledge and applied technology. Basic knowledge is an objective multiple-choice question, which is not very difficult, while application technology is a question-and-answer question that requires relevant knowledge to analyze and answer, so it will be slightly more difficult.
It is suggested that you can review according to the exam syllabus when preparing for the exam, and you can also do some real questions from software designers over the years. As long as you spend time reviewing and preparing for the exam, I believe it is relatively easy to pass the exam.
边栏推荐
- 2021-09-16 集成学习上--task1机器学习数学基础
- 昆仑通态屏幕制作(连载5)---基础篇(串口接收,文本与灯显示)
- 基于遥感解译与GIS技术环境影响评价图件制作(最新导则)
- 【速成MSP430f149】电赛期间学习MSP430f149笔记
- Xcode 建立 UIKit 项目(Hello World)
- 【江科大自化协stm32F103c8t6】笔记之【入门32单片机及TIM定时中断初始化参数配置】
- 边境的悍匪—机器学习实战:第十五章 使用CNN和RNN处理序列
- 十六、Kotlin进阶学习:协程详细学习。
- 十四、Kotlin进阶学习:一、内联函数 inline;二、泛型;三、泛型约束;四、子类与子类型;
- 逻辑右移和算术右移区别
猜你喜欢

Nodejs PM2 monitoring and alarm email (2)

新导则下 防洪评价报告编制方法及洪水建模(HEC-RAS)

R语言 生态环境领域应用

求职准备知识点

UAV ecological environment monitoring, image processing and GIS data analysis

昆仑通态屏幕制作(连载4)---基础篇(图形设定与显示,按钮灯)

Flink-stream/batch/OLAP integrated to get Flink engine

Xcode 绑定按钮点击事件

Conda 安装 tensorflow gpu 1.13.1(验证可行)

“R语言+遥感”的水环境综合评价方法
随机推荐
树莓派OpenCV+OpenCV-contrib
CPU缓存一致性问题
FPGA解析B码----连载1
配置MMdetection环境并训练
Conda 安装 tensorflow gpu 1.13.1(验证可行)
遥感、GIS和GPS技术在水文、气象、灾害、生态、环境及卫生等应用
Arthas command parsing (jvm/thread/stack/heapdump)
边境的悍匪—机器学习实战:第十六章使用RNN和注意力机制进行自然语言处理
DeepLearing4j深度学习之Yolo Tiny实现目标检测
QT连载2:基于QT和STM32H750的LORA试验平台(1)
昆仑通态屏幕制作(连载4)---基础篇(图形设定与显示,按钮灯)
联影医疗一面
通过位运算进行字符大小写转换
FPGA解析B码----连载2
边境的悍匪—机器学习实战:第四章 训练模型
新导则下 防洪评价报告编制方法及洪水建模(HEC-RAS)
Arthas command parsing (watch/tt/sc)
Pytorch(三):可视化工具(Tensorboard、Visdom)
Trust anchor for certification path not found. Exception solution.
Machine Learning, Deep Learning Based on MATLAB 2021b