BC3407-Group-5-Project - BC3407 Group Project With Python

Overview

BC3407-Group-5-Project

As the world struggles to contain the ever-changing variants of COVID-19, healthcare industry is facing tremendous stress from issues arising from different aspects. One significant issue is on resource allocation and utilization. Building additional hospital facility may not be a viable solution in a land scarce country like Singapore. One long standing problem among resource utilization is due to missed appointments. When patients do not show up following their appointment time, the missed appointment results in a waste of resources that have been scheduled and planned. There has not been good solution in reducing the no-show rates. In some, the rates are not even been tracked or computed.

You are to create a Python-based program that can be useful for healthcare industry in tackling this issue. This program is a prototype or proof-of-concept to path the implementation for subsequent development solution to be integrated to the existing system. You are given a sample dataset to start with. It comes with past records of patients who show-up or did not show-up for the appointment in a clinic. You can use it as a start, to develop a suitable solution to provide insights to healthcare professionals. The solution can be a dashboard, web-based or command prompt program. The objective is to apply what you have learnt in this course into this problem domain.

The following table displays the first 5 records from the attached dataset “appointmentData.csv”. It includes the age and gender information of patients. Followed by the time they registered for the appointment and the appointment time details. The day name of appointment is reflected. The other details like their health condition, and other relevant features are also captured. The last column “Show Up” denotes if the patient shows up for the medical appointment.

image

Below are some questions you can try to answer or features you can try to include, you can address one or more of the following or suggest other relevant questions:

  1.     How is the overall picture of no shows over the period?
    
  2.     No-show made up of how many percent of the given data?
    
  3.     What kind of people or age group likely to no-show? Or it’s random?
    
  4.     Does sending reminder helps with reducing no-show?
    
  5.     Provide appropriate dashboard or visualization features to summarize the given data set for viewing.
    
  6.     Suggest or implement suitable features that can help with reducing no-show or highlight patients more likely to no-show with additional reminders or etc?
    

Alternatively, you can look for additional dataset that can help with understanding or tackling this issue or for better resource planning in healthcare. For example, the healthcare resources data, infection rates, chronic disease rates etc. You can make assumptions on information not stated in this requirements, or target a certain specialist clinic.

All work must be done in the Python programming language.

Deliverables: Prepare a zip file (in .zip format only) containing the relevant deliverables below:

  • Report: One word or pdf file containing the proof-of-concept prototype with the following content: -- Work/responsibility distribution. Which team members in charge of which part of the program. -- Objective of the project and how it addresses the issue. -- Features/Functionalities designed for the prototype. -- User manual with print screens from the prototype to illustrate how to use this project's program; consider different user roles. -- Include the links to recording, i,e. the hyperlinks to every group member’s individual recorded videos. Do not submit video files, submit only hyperlink.
  • One folder containing additional dataset (if any), all working files.

One group submit one copy of the above. Submission box will be opened in Week 11. All works submitted will go through plagiarism checker. Submitting work done by others will result in failing the module directly.

No presentation nor lesson on week 13, you are to prepare the recording beforehand and submit before due date. Recording replaces class presentation. The duration of each group member’s individual recording should be about 2 to 3 minutes maximum. You are advised to adhere to the time limit strictly or penalty will be imposed. In the individual video, you are required to reflect on your contribution to the group project, what you have done for the project, what have you learnt from the project. Each group member will record his/her own video and ensure that the hyperlink to the video is included on the first page of the report submitted by the group. You can use Zoom, Teams or YouTube for recording. If you use other software to record into mp4 file, upload online to Youtube, OneDrive or other cloud storage (Do not submit video files). In the case of Youtube, indicate as restricted, and submit only the link information. Include the link information (one link for each team member) in your report.

You are required to submit a peer evaluation form online individually at the end of the semester. Individual peer evaluation submission is compulsory for all team members. An online peer evaluation system will be opened nearer to the submission date.

Good project outcome is the end product of good teamwork. We hope to see all team members contribute equally. The peer evaluation will be considered in evaluating the project grade should the contribution be significantly unequal. Submission will be kept confidential.

Due Date: Week 13 Wednesday (13 Apr 2022, 7 p.m.)

Reference: Zoom Recording: Registering your NTU Zoom account (If you have not done so. Quick Start Guide for NTU Zoom Account.pdf) Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Video Guide on Recording Teams Recording: Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Online Guide on Recording: https://support.microsoft.com/en-us/office/record-a-meeting-in-teams-34dfbe7f-b07d-4a27-b4c6-de62f1348c24

Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023