Starter kit for getting started in the Music Demixing Challenge.

Overview

Airborne Banner

Music Demixing Challenge - Starter Kit

๐Ÿ‘‰ Challenge page

Discord

This repository is the Music Demixing Challenge Submission template and Starter kit!

Clone the repository to compete now!

This repository contains:

  • Documentation on how to submit your models to the leaderboard
  • The procedure for best practices and information on how we evaluate your agent, etc.
  • Starter code for you to get started!

Table of Contents

  1. Competition Procedure
  2. How to access and use dataset
  3. How to start participating
  4. How do I specify my software runtime / dependencies?
  5. What should my code structure be like ?
  6. How to make submission
  7. Other concepts
  8. Important links

Competition Procedure

The Music Demixing (MDX) Challenge is an opportunity for researchers and machine learning enthusiasts to test their skills by creating a system able to perform audio source separation.

In this challenge, you will train your models locally and then upload them to AIcrowd (via git) to be evaluated.

The following is a high level description of how this process works

  1. Sign up to join the competition on the AIcrowd website.
  2. Clone this repo and start developing your solution.
  3. Train your models for audio seperation and write prediction code in test.py.
  4. Submit your trained models to AIcrowd Gitlab for evaluation (full instructions below). The automated evaluation setup will evaluate the submissions against the test dataset to compute and report the metrics on the leaderboard of the competition.

How to access and use the dataset

You are allowed to train your system either exclusively on the training part of MUSDB18-HQ dataset or you can use your choice of data. According to the dataset used, you will be eligible for different leaderboards.

๐Ÿ‘‰ Download MUSDB18-HQ dataset

In case you are using external dataset, please mention it in your aicrowd.json.

{
  [...],
  "external_dataset_used": true
}

The MUSDB18 dataset contains 150 songs (100 songs in train and 50 songs in test) together with their seperations in the following manner:

|
โ”œโ”€โ”€ train
โ”‚   โ”œโ”€โ”€ A Classic Education - NightOwl
โ”‚   โ”‚   โ”œโ”€โ”€ bass.wav
โ”‚   โ”‚   โ”œโ”€โ”€ drums.wav
โ”‚   โ”‚   โ”œโ”€โ”€ mixture.wav
โ”‚   โ”‚   โ”œโ”€โ”€ other.wav
โ”‚   โ”‚   โ””โ”€โ”€ vocals.wav
โ”‚   โ””โ”€โ”€ ANiMAL - Clinic A
โ”‚       โ”œโ”€โ”€ bass.wav
โ”‚       โ”œโ”€โ”€ drums.wav
โ”‚       โ”œโ”€โ”€ mixture.wav
โ”‚       โ”œโ”€โ”€ other.wav
โ”‚       โ””โ”€โ”€ vocals.wav
[...]

Here the mixture.wav file is the original music on which you need to do audio source seperation.
While bass.wav, drums.wav, other.wav and vocals.wav contain files for your training purposes.
Please note again: To be eligible for Leaderboard A, you are only allowed to train on the songs in train.

How to start participating

Setup

  1. Add your SSH key to AIcrowd GitLab

You can add your SSH Keys to your GitLab account by going to your profile settings here. If you do not have SSH Keys, you will first need to generate one.

  1. Clone the repository

    git clone [email protected]:AIcrowd/music-demixing-challenge-starter-kit.git
    
  2. Install competition specific dependencies!

    cd music-demixing-challenge-starter-kit
    pip3 install -r requirements.txt
    
  3. Try out random prediction codebase present in test.py.

How do I specify my software runtime / dependencies ?

We accept submissions with custom runtime, so you don't need to worry about which libraries or framework to pick from.

The configuration files typically include requirements.txt (pypi packages), environment.yml (conda environment), apt.txt (apt packages) or even your own Dockerfile.

You can check detailed information about the same in the ๐Ÿ‘‰ RUNTIME.md file.

What should my code structure be like ?

Please follow the example structure as it is in the starter kit for the code structure. The different files and directories have following meaning:

.
โ”œโ”€โ”€ aicrowd.json           # Submission meta information - like your username
โ”œโ”€โ”€ apt.txt                # Packages to be installed inside docker image
โ”œโ”€โ”€ data                   # Your local dataset copy - you don't need to upload it (read DATASET.md)
โ”œโ”€โ”€ requirements.txt       # Python packages to be installed
โ”œโ”€โ”€ test.py                # IMPORTANT: Your testing/prediction code, must be derived from MusicDemixingPredictor (example in test.py)
โ””โ”€โ”€ utility                # The utility scripts to provide smoother experience to you.
    โ”œโ”€โ”€ docker_build.sh
    โ”œโ”€โ”€ docker_run.sh
    โ”œโ”€โ”€ environ.sh
    โ””โ”€โ”€ verify_or_download_data.sh

Finally, you must specify an AIcrowd submission JSON in aicrowd.json to be scored!

The aicrowd.json of each submission should contain the following content:

{
  "challenge_id": "evaluations-api-music-demixing",
  "authors": ["your-aicrowd-username"],
  "description": "(optional) description about your awesome agent",
  "external_dataset_used": false
}

This JSON is used to map your submission to the challenge - so please remember to use the correct challenge_id as specified above.

How to make submission

๐Ÿ‘‰ SUBMISSION.md

Best of Luck ๐ŸŽ‰ ๐ŸŽ‰

Other Concepts

Time constraints

You need to make sure that your model can do audio seperation for each song within 4 minutes, otherwise the submission will be marked as failed.

Local Run

๐Ÿ‘‰ LOCAL_RUN.md

Contributing

๐Ÿ™ You can share your solutions or any other baselines by contributing directly to this repository by opening merge request.

  • Add your implemntation as test_<approach-name>.py
  • Test it out using python test_<approach-name>.py
  • Add any documentation for your approach at top of your file.
  • Import it in predict.py
  • Create merge request! ๐ŸŽ‰ ๐ŸŽ‰ ๐ŸŽ‰

Contributors

๐Ÿ“Ž Important links

๐Ÿ’ช  Challenge Page: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021

๐Ÿ—ฃ๏ธ  Discussion Forum: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/discussion

๐Ÿ†  Leaderboard: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/leaderboards

Owner
AIcrowd
AIcrowd
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
่ฟ™ๆ˜ฏไธ€ไธชunet-pytorch็š„ๆบ็ ๏ผŒๅฏไปฅ่ฎญ็ปƒ่‡ชๅทฑ็š„ๆจกๅž‹

Unet๏ผšU-Net: Convolutional Networks for Biomedical Image Segmentation็›ฎๆ ‡ๆฃ€ๆต‹ๆจกๅž‹ๅœจPytorchๅฝ“ไธญ็š„ๅฎž็Žฐ ็›ฎๅฝ• ๆ€ง่ƒฝๆƒ…ๅ†ต Performance ๆ‰€้œ€็Žฏๅขƒ Environment ๆณจๆ„ไบ‹้กน Attention ๆ–‡ไปถไธ‹่ฝฝ Downl

Bubbliiiing 567 Jan 05, 2023
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website โ€” VLN-CE Challenge โ€” RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry ่ง‰ๅพ—ๆœ‰็”จ็š„่ฏๅฏไปฅ้กบๆ‰‹็‚นไธชstarๅ—ท ่ฟ™ไธช้กน็›ฎๅฐ†ๅžƒๅœพๅˆ†็ฑปๅฐ่ฝฆไธญ็š„tfliteๆจกๅž‹็งปๆคๅˆฐไบ†ๆ ‘่Ž“ๆดพ3b+ไธŠ้ขใ€‚ ่ฏฅ้กน็›ฎไธป่ฆๆ˜ฏไธบไบ†่ฎฐๅฝ•ๅœจๆ ‘่Ž“ๆดพ้ƒจ็ฝฒyolo fastest tflite็š„ๆต็จ‹ (ไน‹ๅŽๆœ‰ๆ—ถ้—ดไผšๅฐ่ฏ•็”จC++้ƒจ็ฝฒๆฅๆๅ‡

7 Aug 16, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021