Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Overview

Improving Contrastive Learning by Visualizing Feature Transformation

This project hosts the codes, models and visualization tools for the paper:

Improving Contrastive Learning by Visualizing Feature Transformation,
Rui Zhu*, Bingchen Zhao*, Jingen Liu, Zhenglong Sun, Chang Wen Chen
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, Oral
arXiv preprint (arXiv 2108.02982)

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

highlights2

Highlights

  • Visualization Tools: We provide a visualization tool for pos/neg score distribution, which enables us to analyze, interpret and understand the contrastive learning process.
  • Feature Transformation: Inspired by the visualization, we propose a simple yet effective feature transformation (FT), which creates both hard positives and diversified negatives to enhance the training. FT enables to learn more view-invariant and discriminative representations.
  • Less Task-biased: FT makes the model less “task-bias”, which means we can achievesignificant performance improvement on various downstream tasks (object detection, instance segmentation, and long-tailed classification).

highlights

Updates

  • Code, pre-trained models and visualization tools are released. (07/08/2021)

Installation

This project is mainly based on the open-source code PyContrast.

Please refer to the INSTALL.md and RUN.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on ImageNet-1K and ImageNet-100.

pre-train method pre-train dataset backbone #epoch ImageNet-1K VOC det AP50 COCO det AP Link
Supervised ImageNet-1K ResNet-50 - 76.1 81.3 38.2 download
MoCo-v1 ImageNet-1K ResNet-50 200 60.6 81.5 38.5 download
MoCo-v1+FT ImageNet-1K ResNet-50 200 61.9 82.0 39.0 download
MoCo-v2 ImageNet-1K ResNet-50 200 67.5 82.4 39.0 download
MoCo-v2+FT ImageNet-1K ResNet-50 200 69.6 83.3 39.5 download
MoCo-v1+FT ImageNet-100 ResNet-50 200 IN-100 result 77.2 - - download

Note:

  • See our paper for more results on different benchmarks.

Usage

Training on IN-1K

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-1K

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset --ckpt your/path/to/pretrain_model   --n_class 1000 --multiprocessing-distributed --world-size 1 --rank 0 --epochs 100 --lr_decay_epochs 60,80

Training on IN-100

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-100

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --n_class 100  --ckpt your/path/to/pretrain_model  --multiprocessing-distributed --world-size 1 --rank 0 

Transferring to Object Detection

Please refer to DenseCL and MoCo for transferring to object detection.

Visualization Tools

  • Our visualization is offline, which almost does not affect the training speed. Instead of storing K (65536) pair scores, we save their statistical mean and variance to represent the scores’ distribution. You can refer to the original paper for the details.

  • Visualization code is line 69-74 to store the scores. And then we further process the scores in the IpythonNotebook for drawing.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Bingchen Zhao
Currently study @ Tongji University, Super interested in DL and its applications
Bingchen Zhao
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022