pytorch, hand(object) detect ,yolo v5,手检测

Related tags

Deep Learningyolo-v5
Overview

YOLO V5

物体检测,包括手部检测。

项目介绍

手部检测

手部检测示例如下 :

  • 视频示例:
    video

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

手部检测数据集

该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进行制作。
TV-Hand 和 COCO-Hand数据集官网地址 http://vision.cs.stonybrook.edu/~supreeth/

感谢数据集贡献者。    
Paper:  
Contextual Attention for Hand Detection in the Wild. S. Narasimhaswamy, Z. Wei, Y. Wang, J. Zhang, and M. Hoai, IEEE International Conference on Computer Vision, ICCV 2019.   

所有数据集的数据格式

size是全图分辨率, (x,y) 是目标物体中心对于全图的归一化坐标,w,h是目标物体边界框对于全图的归一化宽、高。

dw = 1./(size[0])  
dh = 1./(size[1])  
x = (box[0] + box[1])/2.0 - 1  
y = (box[2] + box[3])/2.0 - 1  
w = box[1] - box[0]  
h = box[3] - box[2]  
x = x*dw  
w = w*dw  
y = y*dh  
h = h*dh  

为了更好了解标注数据格式,可以通过运行 show_yolo_anno.py 脚本进行制作数据集的格式。注意配置脚本里的path和path_voc_names,path为标注数据集的相关文件路径,path_voc_names为数据集配置文件。

制作自己的训练数据集

  • 如下所示,每一行代表一个物体实例,第一列是标签,后面是归一化的中心坐标(x,y),和归一化的宽(w)和高(h),且每一列信息空格间隔。归一化公式如上,同时可以通过show_yolo_anno.py进行参数适配后,可视化验证其正确性。
label     x                  y                   w                  h
0 0.6200393316313977 0.5939000244140625 0.17241466452130497 0.14608001708984375
0 0.38552491996544863 0.5855700073242187 0.14937006832733554 0.1258599853515625
0 0.32889763138738515 0.701989990234375 0.031338589085055775 0.0671400146484375
0 0.760577424617577 0.69422998046875 0.028556443261975064 0.0548599853515625
0 0.5107086662232406 0.6921500244140625 0.018792660530470802 0.04682000732421875
0 0.9295538153861138 0.67602001953125 0.03884511231750328 0.01844000244140625

预训练模型

从零开始预训练模型

手部检测预训练模型

项目使用方法

数据集可视化

  • 根目录下运行命令: show_yolo_anno.py (注意脚本内相关参数配置 )

模型训练

  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python video.py (注意脚本内相关参数配置 )
Owner
Eric.Lee
Eric.Lee
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022