YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

Overview

YOLOv5-Paddle

YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle

Readme Card

  • 支持AutoBatch
  • 支持AutoAnchor
  • 支持GPU Memory

快速开始

使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

需要安装额外模块

pip install gputil==1.4.0
pip install pycocotools
COCO数据集

数据集已挂载至aistudio项目中,如果需要本地训练可以从这里下载数据集,和标签文件

Data
|-- coco
|   |-- annotions
|   |-- images
|      |-- train2017
|      |-- val2017
|      |-- test2017
|   |-- labels
|      |-- train2017
|      |-- val2017
|      |-- train2017.cache(初始解压可删除,训练时会自动生成)
|      |-- val2017.cache(初始解压可删除,训练时会自动生成)
|   |-- test-dev2017.txt
|   |-- val2017.txt
|   |-- train2017.txt
`   `-- validation

修改data/coco.yaml配置自己的coco路径,你可能需要修改path变量

path: /home/aistudio/Data/coco  # dataset root dir

训练

  • 考虑到AIStudio对于github的访问速度,预先提供了Arial.ttf

  • AIStudio后端不支持绘图,部分可视乎在AIStudio仓库被注释

training scratch for coco

mkdir /home/aistudio/.config/QuanhaoGuo/
cp /home/aistudio/Arial.ttf /home/aistudio/.config/QuanhaoGuo/
cd YOLOv5-Paddle
python train.py --img 896 --batch 8 --epochs 300 --data ./data/coco.yaml --cfg yolov5s.yaml --weights ''

验证

python val.py --img 640  --data ./data/coco.yaml --weights ./weights/yolov5s.pdparams --cfg yolov5s.yaml

通过--task [val/test]控制验证集和测试集

所有提供的模型验证精度如下,本仓库的所有资源文件包括预训练模型均可在百度云盘下载code:dng9

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
params
(M)
FLOPs
@640 (B)
mAPtest
0.5:0.95
mAPtest
0.5
YOLOv5n 640 28.4 46.5 1.9 4.5 28.1 46.2
YOLOv5s 640 37.2 56.4 7.2 16.5 37.1 56.1
YOLOv5m 640 45.1 64.2 21.2 49.0 45.4 64.3
YOLOv5l 640 48.6 67.4 46.5 109.1 48.9 67.5
YOLOv5x 640 50.6 69.1 86.7 205.7 0.507 0.690
YOLOv5n6 1280 34.0 51.1 3.2 4.6 34.3 51.7
YOLOv5s6 1280 44.5 63.4 16.8 12.6 44.3 63.0
YOLOv5m6 1280 50.9 69.4 35.7 50.0 51.1 69.5
YOLOv5l6 1280 53.5 71.8 76.8 111.4 53.7 71.8
YOLOv5x6
+ [TTA][TTA]
1280
1536
54.6
55.2
72.6
73.0
140.7
-
209.8
-
55.0
55.8
73.0
73.5

使用本地环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

git clone https://github.com/GuoQuanhao/YOLOv5-Paddle

然后按照使用AIStudio高性能环境快速构建YOLOv5训练执行

训练Custom Data

这里以一个类别的光栅数据集为例,数据集已上传至AIStudio

其组织结构如下:

Data
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val
|   |-- val.txt
|   |-- train.txt

另外你需要构建data/guangshan.yaml,相关文件已放入相关目录,主要用于指定数据集读取路径和模型配置。

# YOLOv5 reproduction 🚀 by GuoQuanhao

train: /home/aistudio/guangshan/images/train  # 118287 images
val: /home/aistudio/guangshan/images/val  # 5000 images
# number of classes
nc: 1
# class names
names: ['spectrum']

训练

python train.py --img 640 --batch 16 --epochs 100 --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./weights/yolov5s.pdparams
Starting training for 100 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      0/99     4.19G    0.1039   0.04733         0        29       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:43<00:00, 11.50s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:06<00:00,  6.64s/it]
                 all         16         29      0.266      0.379      0.226     0.0468

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      1/99     4.41G   0.08177    0.0289         0        37       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:40<00:00, 11.20s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:05<00:00,  5.49s/it]
                 all         16         29      0.462      0.445      0.398      0.109
......

完整的训练日志存在data/training.txt

利用VisualDL可视化训练过程

visualdl --logdir ./runs/train/exp

验证

python val.py --img 640  --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./runs/train/exp/weights/best.pdparams

推理

python detect.py --weights ./runs/train/exp/weights/best.pdparams --cfg yolov5s.yaml --data ./data/guangshan.yaml --source ./data/images/guangshan.jpg

TODO

  • Multi-GPU Training ☘️
  • PaddleLite inference 🌟
  • Model to ONNX

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
github Deep Hao的github
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
You might also like...
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

Drone detection using YOLOv5
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Add gui for YoloV5 using PyQt5
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

A program to recognize fruits on pictures or videos using yolov5
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Comments
  • train相关问题

    train相关问题

    作者您好,我在使用您的数据集训练YOLOv5n模型时,出现一个警告: Epoch gpu_mem box obj cls labels img_size 1/99 1.94G 0.09787 0.5162 0 679 640: 100%|███████████████████████████████████████████████████████████████████████| 57/57 [04:48<00:00, 5.05s/it] Class Images Labels P R [email protected] [email protected]:.95: 25%|██████████████▎ | 1/4 [00:17<00:53, 17.96s/it]/mnt/YOLOv5-Paddle-main/utils/loss.py:191: RuntimeWarning: divide by zero encountered in true_divide j = np.maximum(r, 1 / r).max(2) < self.hyp['anchor_t'] # compare Class Images Labels P R [email protected] [email protected]:.95: 100%|█████████████████████████████████████████████████████████| 4/4 [00:50<00:00, 12.56s/it] all 50 7742 0.571 0.664 0.579 0.188

    训练集为450,验证集为50,训练的目标只有一类“钢筋” (label: rebar) 想问一下会影响后续的部署使用吗?

    opened by qiujianchen 0
  • resume掉精度问题该怎么解决呢?

    resume掉精度问题该怎么解决呢?

    您好,我在使用您的代码时发现--resume时精度会下降,并且可能需要训练一些epoch才能恢复到之前的精度,请问该如何做才能做到resume时不掉精度呢(因为AIstudio的GPU每天只有8点算力卡,我所使用的数据集训练一个epoch需要一个小时,只能通过resume来完成整个训练过程) image

    图中的第一个39-45是直接resume的结果

    图中的第二个39-48是我认为之前训练时x['learning_rate']和x['momentum']存在,所以尝试在训练开始前给它们赋上warmup结束时的值,但发现效果并未达到预期 for j, x in enumerate(optimizer._param_groups): x['learning_rate'] = np.interp(nw, [0, nw], [hyp['warmup_bias_lr'] if j == 2 else 0.0, scheduler.base_lr * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(nw, [0, nw], [hyp['warmup_momentum'], hyp['momentum']])

    希望能得到您的帮助,谢谢!

    opened by diaoa1900 0
  • ai studio绘图问题

    ai studio绘图问题

    对比了yolov5的源码,绘图部分应该不是ai studio不支持的原因,而是在metrics.py的plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=())函数中,for i, y in enumerate(py.t())编写错误,修改为for i, y in enumerate(py.T)后可以正确绘制PR图

    opened by misaka-network10032 0
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022