Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Overview

PWC

PWC

PWC

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang and Xubo Song.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for SenFormer.


💾 Code Snippet (SenFormer)| ⌨️ Code Snippet (FPNT)| 📜 Paper | 论文

🔨 Installation

Conda environment

  • Clone this repository and enter it: git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer.
  • Create a conda environment conda create -n senformer python=3.8, and activate it conda activate senformer.
  • Install Pytorch and torchvision conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch — (you may also switch to other version by specifying the version number).
  • Install MMCV library pip install mmcv-full==1.4.0
  • Install MMSegmentation library by running pip install -e . in SenFormer directory.
  • Install other requirements pip install timm einops

Here is a full script for setting up a conda environment to use SenFormer (with CUDA 10.2 and pytorch 1.7.1):

conda create -n senformer python=3.8
conda activate senformer
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch

git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer
pip install mmcv-full==1.4.0
pip install -e .
pip install timm einops

Datasets

For datasets preparations please refer to MMSegmentation guidelines.

Pretrained weights

ResNet pretrained weights will be automatically downloaded before training.

For Swin Transformer ImageNet pretrained weights, you can either:

  • run bash tools/download_swin_weights.sh in SenFormer project to download all Swin Transformer pretrained weights (it will place weights under pretrain/ folder ).
  • download desired backbone weights here: Swin-T, Swin-S, Swin-B, Swin-L and place them under pretrain/ folder.
  • download weights from official repository then, convert them to mmsegmentation format following mmsegmentation guidelines.

🎯 Model Zoo

SenFormer models with ResNet and Swin's backbones and ADE20K, COCO-Stuff 10K, Pascal Context and Cityscapes.

ADE20K

Backbone mIoU mIoU (MS) #params FLOPs Resolution Download
ResNet-50 44.6 45.6 144M 179G 512x512 model config
ResNet-101 46.5 47.0 163M 199G 512x512 model config
Swin-Tiny 46.0 46.4 144M 179G 512x512 model config
Swin-Small 49.2 50.4 165M 202G 512x512 model config
Swin-Base 51.8 53.2 204M 242G 640x640 model config
Swin-Large 53.1 54.2 314M 546G 640x640 model config

COCO-Stuff 10K

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 39.0 39.7 144M 512x512 model config
ResNet-101 39.6 40.6 163M 512x512 model config
Swin-Large 49.1 50.1 314M 512x512 model config

Pascal Context

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 53.2 54.3 144M 480x480 model config
ResNet-101 55.1 56.6 163M 480x480 model config
Swin-Large 62.4 64.0 314M 480x480 model config

Cityscapes

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 78.8 80.1 144M 512x1024 model config
ResNet-101 80.3 81.4 163M 512x1024 model config
Swin-Large 82.2 83.3 314M 512x1024 model config

🔭 Inference

Download one checkpoint weights from above, for example SenFormer with ResNet-50 backbone on ADE20K:

Inference on a dataset

# Single-gpu testing
python tools/test.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file

# Multi-gpu testing
./tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM>

# Multi-gpu, multi-scale testing
tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM> --aug-test

Inference on custom data

To generate segmentation maps for your own data, run the following command:

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Run python demo/image_demo.py --help for additional options.

🔩 Training

Follow above instructions to download ImageNet pretrained weights for backbones and run one of the following command:

# Single-gpu training
python tools/train.py path/to/model/config 

# Multi-gpu training
./tools/dist_train.sh path/to/model/config <GPU_NUM>

For example to train SenFormer with a ResNet-50 as backbone on ADE20K:

# Single-gpu training
python tools/train.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py 

# Multi-gpu training
./tools/dist_train.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py <GPU_NUM>

Note that the default learning rate and training schedule is for an effective batch size of 16, (e.g. 8 GPUs & 2 imgs/gpu).

Acknowledgement

This code is build using MMsegmentation library as codebase and uses timm and einops as well.

📚 Citation

If you find this repository useful, please consider citing our work 📝 and giving a star 🌟 :

@article{bousselham2021senformer,
  title={Efficient Self-Ensemble Framework for Semantic Segmentation},
  author={Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang, Xubo Song},
  journal={arXiv preprint arXiv:2111.13280},
  year={2021}
}
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022