Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

Overview

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations

Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital

framework

Introduction

This repository contains the implementation of our TearingNet paper accepted in CVPR 2021. Given a point cloud dataset containing objects with various genera, or scenes with multiple objects, we propose the TearingNet, which is an autoencoder tackling the challenging task of representing the point clouds using a fixed-length descriptor. Unlike existing works directly deforming predefined primitives of genus zero (e.g., a 2D square patch) to an object-level point cloud, our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively. Particularly, the Tearing network module learns the point cloud topology explicitly. By breaking the edges of a primitive graph, it tears the graph into patches or with holes to emulate the topology of a target point cloud, leading to faithful reconstructions.

Installation

  • We use Python 3.6, PyTorch 1.3.1 and CUDA 10.0, example commands to set up a virtual environment with anaconda are:
conda create tearingnet python=3.6
conda activate tearingnet
conda install pytorch=1.3.1 torchvision=0.4.2 cudatoolkit=10.0 -c pytorch 
conda install -c open3d-admin open3d
conda install -c conda-forge tensorboardx
conda install -c anaconda h5py

Data Preparation

KITTI Multi-Object Dataset

  • Our KITTI Multi-Object (KIMO) Dataset is constructed with kitti_dataset.py of PCDet (commit 95d2ab5). Please clone and install PCDet, then prepare the KITTI dataset according to their instructions.
  • Assume the name of the cloned folder is PCDet, please replace the create_groundtruth_database() function in kitti_dataset.py by our modified one provided in TearingNet/util/pcdet_create_grouth_database.py.
  • Prepare the KITTI dataset, then generate the data infos according to the instructions in the README.md of PCDet.
  • Create the folders TearingNet/dataset and TearingNet/dataset/kittimulobj then put the newly-generated folder PCDet/data/kitti/kitti_single under TearingNet/dataset/kittimulobj. Also, put the newly-generated file PCDet/data/kitti/kitti_dbinfos_object.pkl under the TearingNet/dataset/kittimulobj folder.
  • Instead of assembling several single-object point clouds together and write down as a multi-object point cloud, we generate the parameters that parameterize the multi-object point clouds then assemble them on the fly during training/testing. To obtain the parameters, run our prepared scripts as follows under the TearingNet folder. These scripts generate the training and testing splits of the KIMO-5 dataset:
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_test_5x5.sh
  • The file structure of the KIMO dataset after these steps becomes:
kittimulobj
      ├── kitti_dbinfos_object.pkl
      ├── kitti_mulobj_param_test_5x5_2048.pkl
      ├── kitti_mulobj_param_train_5x5_2048.pkl
      └── kitti_single
              ├── 0_0_Pedestrian.bin
              ├── 1000_0_Car.bin
              ├── 1000_1_Car.bin
              ├── 1000_2_Van.bin
              ...

CAD Model Multi-Object Dataset

dataset
    ├── cadmulobj
    ├── kittimulobj
    ├── modelnet40
    │       └── modelnet40_ply_hdf5_2048
    │                   ├── ply_data_test0.h5
    │                   ├── ply_data_test_0_id2file.json
    │                   ├── ply_data_test1.h5
    │                   ├── ply_data_test_1_id2file.json
    │                   ...
    └── shapenet_part
            ├── shapenetcore_partanno_segmentation_benchmark_v0
            │   ├── 02691156
            │   │   ├── points
            │   │   │   ├── 1021a0914a7207aff927ed529ad90a11.pts
            │   │   │   ├── 103c9e43cdf6501c62b600da24e0965.pts
            │   │   │   ├── 105f7f51e4140ee4b6b87e72ead132ed.pts
            ...
  • Extract the "person", "car", "cone" and "plant" models from ModelNet40, and the "motorbike" models from the ShapeNet part dataset, by running the following Python script under the TearingNet folder:
python util/cad_models_collector.py
  • The previous step generates the file TearingNet/dataset/cadmulobj/cad_models.npy, based on which we generate the parameters for the CAMO dataset. To do so, launch the following scripts:
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_test_5x5.sh
  • The file structure of the CAMO dataset after these steps becomes:
cadmulobj
    ├── cad_models.npy
    ├── cad_mulobj_param_test_5x5.npy
    └── cad_mulobj_param_train_5x5.npy

Experiments

Training

We employ a two-stage training strategy to train the TearingNet. The first step is to train a FoldingNet (E-Net & F-Net in paper). Take the KIMO dataset as an example, launch the following scripts under the TearingNet folder:

./scripts/launch.sh ./scripts/experiments/train_folding_kitti.sh

Having finished the first step, a pretrained model will be saved in TearingNet/results/train_folding_kitti. To load the pretrained FoldingNet into a TearingNet configuration and perform training, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/train_tearing_kitti.sh

To see the meanings of the parameters in train_folding_kitti.sh and train_tearing_kitti.sh, check the Python script TearinNet/util/option_handler.py.

Reconstruction

To perform the reconstruction experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/reconstruction.sh

One may write down the reconstructions in PLY format by setting a positive PC_WRITE_FREQ value. Again, please refer to TearinNet/util/option_handler.py for the meanings of individual parameters.

Counting

To perform the counting experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/counting.sh

Citing this Work

Please cite our work if you find it useful for your research:

@inproceedings{pang2021tearingnet, 
    title={TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations}, 
    author={Pang, Jiahao and Li, Duanshun, and Tian, Dong}, 
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2021}
}

Related Projects

torus interpolation

Owner
InterDigital
InterDigital
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023