Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Overview

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

If you use this code for your research, please cite our paper:

@Article{informatics8020040,
AUTHOR = {Altini, Nicola and De Giosa, Giuseppe and Fragasso, Nicola and Coscia, Claudia and Sibilano, Elena and Prencipe, Berardino and Hussain, Sardar Mehboob and Brunetti, Antonio and Buongiorno, Domenico and Guerriero, Andrea and Tatò, Ilaria Sabina and Brunetti, Gioacchino and Triggiani, Vito and Bevilacqua, Vitoantonio},
TITLE = {Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN},
JOURNAL = {Informatics},
VOLUME = {8},
YEAR = {2021},
NUMBER = {2},
ARTICLE-NUMBER = {40},
URL = {https://www.mdpi.com/2227-9709/8/2/40},
ISSN = {2227-9709},
DOI = {10.3390/informatics8020040}
}

Graphical Abstract: GraphicalAbstract


Materials

Dataset can be downloaded for free at this URL.


Configuration and pre-processing

Configure the file config/paths.py according to paths in your computer. Kindly note that base_dataset_dir should be an absolute path which points to the directory which contains the subfolders with images and labels for training and validating the algorithms present in this repository.

In order to perform pre-processing, execute the following scripts in the given order.

  1. Perform Train / Test split:
python run/task0/split.py --original-training-images=OTI --original-training-labels=OTL \ 
                          --original-validation-images=OVI --original-validation-labels=OVL

Where:

  • OTI is the path with the CT scan from the original dataset (downloaded from VerSe challenge, see link above);
  • OTL is the path with the labels related to the original dataset;
  • OVI is the path where test images will be put;
  • OVL is the path where test labels will be put.
  1. Cropping the splitted datasets:
python run/task0/crop_mask.py --original-training-images=OTI --original-training-labels=OTL \ 
                              --original-validation-images=OVI --original-validation-labels=OVL

Where the arguments are the same of 1).

  1. Pre-processing the cropped datasets (see also Payer et al. pre-processing):
python run/task0/pre_processing.py

Binary Segmentation

In order to perform this stage, 3D V-Net has been exploited. The followed workflow for binary segmentation is depicted in the following figure:

BinarySegmentationWorkflowImage

Training

To perform the training, the syntax is as follows:

python run/task1/train.py --epochs=NUM_EPOCHS --batch=BATCH_SIZE --workers=NUM_WORKERS \
                          --lr=LR --val_epochs=VAL_EPOCHS

Where:

  • NUM_EPOCHS is the number of epochs for which training the CNN (we often used 500 or 1000 in our experiments);
  • BATCH_SIZE is the batch size (we often used 8 in our experiments, in order to benefit from BatchNormalization layers);
  • NUM_WORKERS is the number of workers in the data loading (see PyTorch documentation);
  • LR is the learning rate,
  • VAL_EPOCHS is the number of epochs after which performing validation during training (a checkpoint model is also saved every VAL_EPOCHS epochs).

Inference

To perform the inference, the syntax is as follows:

python run/task1/segm_bin.py --path_image_in=PATH_IMAGE_IN --path_mask_out=PATH_MASK_OUT

Where:

  • PATH_IMAGE_IN is the folder with input images;
  • PATH_MASK_OUT is the folder where to write output masks.

An example inference result is depicted in the following figure:

BinarySegmentationInferenceImage

Metrics Calculation

In order to calculate binary segmentation metrics, the syntax is as follows:

python run/task1/metrics.py

Multiclass Segmentation

The followed workflow for multiclass segmentation is depicted in the following figure:

MultiClassSegmentationWorkflow

To perform the Multiclass Segmentation (can be performed only on binary segmentation output), the syntax is as follows:

python run/task2/multiclass_segmentation.py --input-path=INPUT_PATH \
                                            --gt-path=GT_PATH \
                                            --output-path=OUTPUT_PATH \
                                            --use-inertia-tensor=INERTIA \
                                            --no-metrics=NOM

Where:

  • INPUT_PATH is the path to the folder containing the binary spine masks obtained in previous steps (or binary spine ground truth).
  • GT_PATH is the path to the folder containing ground truth labels.
  • OUTPUT_PATH is the path where to write the output multiclass masks.
  • INERTIA can be either 0 or 1 depending or not if you want to include inertia tensor in the feature set for discrminating between bodies and arches (useful for scoliosis cases); default is 0.
  • NOM can be either 0 or 1 depending or not if you want to skip the calculation of multi-Hausdorff distance and multi-ASSD for the vertebrae labelling (it can be very computationally expensive with this implementation); default is 1.

Figures highlighting the different steps involved in this stage follows:

  • Morphology MultiClassSegmentationMorphology

  • Connected Components MultiClassSegmentationConnectedComponents

  • Clustering and arch/body coupling MultiClassSegmentationClustering

  • Centroids computation MultiClassSegmentationCentroids

  • Mesh reconstruction MultiClassSegmentationMesh


Visualization of the Predictions

The base_dataset_dir folder also contains the outputs folders:

  • predTr contains the binary segmentation predictions performed on training set;
  • predTs contains the binary segmentation predictions performed on testing set;
  • predMulticlass contains the multiclass segmentation predictions and the JSON files containing the centroids' positions.

Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022