Multiple-Object Tracking with Transformer

Overview

TransTrack: Multiple-Object Tracking with Transformer

License: MIT

Introduction

TransTrack: Multiple-Object Tracking with Transformer

Models

Training data Training time Validation MOTA download
crowdhuman, mot_half 36h + 1h 65.4 model
crowdhuman 36h 53.8 model
mot_half 8h 61.6 model

Models are also available in Baidu Drive by code m4iv.

Notes

  • Evaluating crowdhuman-training model and mot-training model use different command lines, see Steps.
  • We observe about 1 MOTA noise.
  • If the resulting MOTA of your self-trained model is not desired, playing around with the --track_thresh sometimes gives a better performance.
  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on imagenet.

Demo

Installation

The codebases are built on top of Deformable DETR and CenterTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone https://github.com/PeizeSun/TransTrack.git
cd TransTrack
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare dataset
mkdir -p crowdhuman/annotations
cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_val.json crowdhuman/annotations/CrowdHuman_val.json
cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_train.json crowdhuman/annotations/CrowdHuman_train.json
cp -r /path_to_crowdhuman_dataset/CrowdHuman_train crowdhuman/CrowdHuman_train
cp -r /path_to_crowdhuman_dataset/CrowdHuman_val crowdhuman/CrowdHuman_val
mkdir mot
cp -r /path_to_mot_dataset/train mot/train
cp -r /path_to_mot_dataset/test mot/test
python track_tools/convert_mot_to_coco.py

CrowdHuman dataset is available in CrowdHuman. We provide annotations of json format.

MOT dataset is available in MOT.

  1. Pre-train on crowdhuman
sh track_exps/crowdhuman_train.sh
python track_tools/crowdhuman_model_to_mot.py

The pre-trained model is available crowdhuman_final.pth.

  1. Train TransTrack
sh track_exps/crowdhuman_mot_trainhalf.sh
  1. Evaluate TransTrack
sh track_exps/mot_val.sh
sh track_exps/mot_eval.sh
  1. Visualize TransTrack
python track_tools/txt2video.py

Notes

  • Evaluate pre-trained CrowdHuman model on MOT
sh track_exps/det_val.sh
sh track_exps/mot_eval.sh

License

TransTrack is released under MIT License.

Citing

If you use TransTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{transtrack,
  title   =  {TransTrack: Multiple-Object Tracking with Transformer},
  author  =  {Peize Sun and Yi Jiang and Rufeng Zhang and Enze Xie and Jinkun Cao and Xinting Hu and Tao Kong and Zehuan Yuan and Changhu Wang and Ping Luo},
  journal =  {arXiv preprint arXiv: 2012.15460},
  year    =  {2020}
}
Owner
Peize Sun
Peize Sun
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022