U-Net for GBM

Overview

My Final Year Project(FYP) In National University of Singapore(NUS)

You need

Pytorch(stable 1.9.1) 

Both cuda version and cpu version are OK

File Structure

📦FYP-U-Net
 ┣ 📂data
 ┃ ┣ 📂imgs
 ┃ ┃ ┣ 📌···.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂masks
 ┃ ┃ ┣ 📌···_mask.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂PredictImage 
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂SaveImage
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┗ 📂Source
 ┃ ┃ ┣ 📂TCGA_CS_4941_19960909
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1_mask.tif 
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2_mask.tif 
 ┃ ┃ ┃ ┗ ···
 ┃ ┃ ┣ 📂TCGA_CS_4942_19970222
 ┃ ┃ ┗ ···
 ┣ 📂params
 ┃ ┗ 📜unet.pth
 ┣ 📓README,md
 ┣ 📄data.py
 ┣ 📄net.py
 ┣ 📄utils.py
 ┗ 📄train.py
  • 'data' dir contains the origin dataset in 'Source' dir. And the dataset can be download in Kaggle (https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/). And also you can use different dataset.
  • 'imgs' contains images and 'masks' contains corresponding masks to images. Corresponding masks have a _mask suffix. More inforamtion you can check in kaggle.
  • 'SaveImage' is meant for store train results and 'PredictImage' is meant for store test results.
  • 'params' is meant for store model.

Quick Up

Run train.py

Change DataSet

  • Delte all images in data dir and its subdir.

  • Install dataset from kaggle or anything you like(PS. Corresponding masks must have a _mask suffix) into 'Source' dir

  • Run data.py

    python3 data.py
    

    Remember change the path. After this, you will get images and masks in imgs dir and masks dir.

  • Run train.py

    python3 train.py
    

    Remember change the path. And you can see the results in 'SaveImage' dir and 'PredictImage' dir.

Results

Segment Image

Pre-trained model

https://drive.google.com/file/d/1yyrITv7BQf9kDnP__g6Qa3_wUPD1c_i_/view?usp=sharing

Owner
PinkR1ver
Artist, go with the flow, stay up late
PinkR1ver
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022