Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

Related tags

Deep LearningKEPLER
Overview

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

Source code for TACL 2021 paper KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation.

Requirements

  • PyTorch version >= 1.1.0
  • Python version >= 3.5
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • For faster training install NVIDIA's apex library with the --cuda_ext option

Installation

This repo is developed on top of fairseq and you can install our version like installing fairseq from source:

pip install cython
git clone https://github.com/THU-KEG/KEPLER
cd KEPLER
pip install --editable .

Pre-training

Preprocessing for MLM data

Refer to the RoBERTa document for the detailed data preprocessing of the datasets used in the Masked Language Modeling (MLM) objective.

Preprocessing for KE data

The pre-training with KE objective requires the Wikidata5M dataset. Here we use the transductive split of Wikidata5M to demonstrate how to preprocess the KE data. The scripts used below are in this folder.

Download the Wikidata5M transductive data and its corresponding corpus, and then uncompress them:

wget -O wikidata5m_transductive.tar.gz https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz?dl=1
wget -O wikidata5m_text.txt.gz https://www.dropbox.com/s/7jp4ib8zo3i6m10/wikidata5m_text.txt.gz?dl=1
tar -xzvf wikidata5m_transductive.tar.gz
gzip -d wikidata5m_text.txt.gz

Convert the original Wikidata5M files into the numerical format used in pre-training:

python convert.py --text wikidata5m_text.txt \
		--train wikidata5m_transductive_train.txt \
		--valid wikidata5m_transductive_valid.txt \
		--converted_text Qdesc.txt \
		--converted_train train.txt \
		--converted_valid valid.txt

Encode the entity descriptions with the GPT-2 BPE:

mkdir -p gpt2_bpe
wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
python -m examples.roberta.multiprocessing_bpe_encoder \
		--encoder-json gpt2_bpe/encoder.json \
		--vocab-bpe gpt2_bpe/vocab.bpe \
		--inputs Qdesc.txt \
		--outputs Qdesc.bpe \
		--keep-empty \
		--workers 60

Do negative sampling and dump the whole training and validation data:

python KGpreprocess.py --dumpPath KE1 \
		-ns 1 \
		--ent_desc Qdesc.bpe \
		--train train.txt \
		--valid valid.txt

The above command generates training and validation data for one epoch. You can generate data for more epochs by running it many times and dump to different folders (e.g. KE2, KE3, ...).

There may be too many instances in the KE training data generated above and thus results in the time for training one epoch is too long. We then randomly split the KE training data into smaller parts and the number of training instances in each part aligns with the MLM training data:

python splitDump.py --Path KE1 \
		--split_size 6834352 \
		--negative_sampling_size 1

The KE1 will be splited into KE1_0, KE1_1, KE1_2, KE1_3. We then binarize them for training:

wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
for KE_Data in ./KE1_0/ ./KE1_1/ ./KE1_2/ ./KE1_3/ ; do \
    for SPLIT in head tail negHead negTail; do \
        fairseq-preprocess \ #if fairseq-preprocess cannot be founded, use "python -m fairseq_cli.preprocess" instead
            --only-source \
            --srcdict gpt2_bpe/dict.txt \
            --trainpref ${KE_Data}${SPLIT}/train.bpe \
            --validpref ${KE_Data}${SPLIT}/valid.bpe \
            --destdir ${KE_Data}${SPLIT} \
            --workers 60; \
    done \
done

Running

An example pre-training script:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
LR=6e-04                # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=3        # Batch size.
NUM_NODES=16					 # Number of machines
ROBERTA_PATH="path/to/roberta.base/model.pt" #Path to the original roberta model
CHECKPOINT_PATH="path/to/checkpoints" #Directory to store the checkpoints
UPDATE_FREQ=`expr 784 / $NUM_NODES` # Increase the batch size

DATA_DIR=../Data

#Path to the preprocessed KE dataset, each item corresponds to a data directory for one epoch
KE_DATA=$DATA_DIR/KEI/KEI1_0:$DATA_DIR/KEI/KEI1_1:$DATA_DIR/KEI/KEI1_2:$DATA_DIR/KEI/KEI1_3:$DATA_DIR/KEI/KEI3_0:$DATA_DIR/KEI/KEI3_1:$DATA_DIR/KEI/KEI3_2:$DATA_DIR/KEI/KEI3_3:$DATA_DIR/KEI/KEI5_0:$DATA_DIR/KEI/KEI5_1:$DATA_DIR/KEI/KEI5_2:$DATA_DIR/KEI/KEI5_3:$DATA_DIR/KEI/KEI7_0:$DATA_DIR/KEI/KEI7_1:$DATA_DIR/KEI/KEI7_2:$DATA_DIR/KEI/KEI7_3:$DATA_DIR/KEI/KEI9_0:$DATA_DIR/KEI/KEI9_1:$DATA_DIR/KEI/KEI9_2:$DATA_DIR/KEI/KEI9_3:

DIST_SIZE=`expr $NUM_NODES \* 4`

fairseq-train $DATA_DIR/MLM \                #Path to the preprocessed MLM datasets
        --KEdata $KE_DATA \                      #Path to the preprocessed KE datasets
        --restore-file $ROBERTA_PATH \
        --save-dir $CHECKPOINT_PATH \
        --max-sentences $MAX_SENTENCES \
        --tokens-per-sample 512 \
        --task MLMetKE \                     
        --sample-break-mode complete \
        --required-batch-size-multiple 1 \
        --arch roberta_base \
        --criterion MLMetKE \
        --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
        --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
        --clip-norm 0.0 \
        --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_UPDATES --warmup-updates $WARMUP_UPDATES \
        --update-freq $UPDATE_FREQ \
        --negative-sample-size 1 \ # Negative sampling size (one negative head and one negative tail)
        --ke-model TransE \ 
        --init-token 0 \
        --separator-token 2 \
        --gamma 4 \        # Margin of the KE objective
        --nrelation 822 \
        --skip-invalid-size-inputs-valid-test \
        --fp16 --fp16-init-scale 2 --threshold-loss-scale 1 --fp16-scale-window 128 \
        --reset-optimizer --distributed-world-size ${DIST_SIZE} --ddp-backend no_c10d --distributed-port 23456 \
        --log-format simple --log-interval 1 \
        #--relation-desc  #Add this option to encode the relation descriptions as relation embeddings (KEPLER-Rel in the paper)

Note: The above command assumes distributed training on 64x16GB V100 GPUs, 16 machines. If you have fewer GPUs or GPUs with less memory you may need to reduce $MAX_SENTENCES and increase $UPDATE_FREQ to compensate. Alternatively if you have more GPUs you can decrease $UPDATE_FREQ accordingly to increase training speed.

Note: If you are interested in the detailed implementations. The main implementations are in tasks/MLMetKE.py and criterions/MLMetKE.py. We encourage to master the fairseq toolkit before learning KEPLER implementation details.

Usage for NLP Tasks

We release the pre-trained checkpoint for NLP tasks. Since KEPLER does not modify RoBERTa model architectures, the KEPLER checkpoint can be directly used in the same way as RoBERTa checkpoints in the downstream NLP tasks.

Convert Checkpoint to HuggingFace's Transformers

In the fine-tuning and usage, it will be more convinent to convert the original fairseq checkpoints to HuggingFace's Transformers.

The conversion can be finished with this code. The example command is:

python -m transformers.convert_roberta_original_pytorch_checkpoint_to_pytorch \
			--roberta_checkpoint_path path_to_KEPLER_checkpoint \
			--pytorch_dump_folder_path path_to_output \

The path_to_KEPLER_checkpoint should contain model.pt (the downloaded KEPLER checkpoint) and dict.txt (standard RoBERTa dictionary file).

Note that the new versions of HuggingFace's Transformers library requires fairseq>=0.9.0, but the modified fairseq library in this repo and our checkpoints generated with is fairseq==0.8.0. The two versions are minorly different in the checkpoint format. Hence transformers<=2.2.2 or pytorch_transformers are needed for checkpoint conversion here.

TACRED

We suggest to use the converted HuggingFace's Transformers checkpoint as well as the OpenNRE library to perform experiments on TACRED. An example code will be updated soon.

To directly fine-tune KEPLER on TACRED in fairseq framework, please refer to this script. The script requires 2x16GB V100 GPUs.

FewRel

To finetune KEPLER on FewRel, you can use the offiicial code in the FewRel repo and set --encoder roberta as well as --pretrained_checkpoint path_to_converted_KEPLER.

OpenEntity

Please refer to this directory and this script for the codes of OpenEntity experiments.

These codes are modified on top of ERNIE.

GLUE

For the fine-tuning on GLUE tasks, refer to the official guide of RoBERTa.

Refer to this directory for the example scripts along with hyper-parameters.

Knowledge Probing (LAMA and LAMA-UHN)

For the experiments on LAMA, please refer to the codes in the LAMA repo and set --roberta_model_dir path_to_converted_KEPLER.

The LAMA-UHN dataset can be created with this scirpt.

Usage for Knowledge Embedding

We release the pre-trained checkpoint for KE tasks.

First, install the graphvite package in./graphvite following its instructions. GraphVite is an fast toolkit for network embedding and knowledge embedding, and we made some modifications on top of them.

Generate the entity embeddings and relation embeddings withgenerate_embeddings.py. The arguments are as following:

  • --data: the entity decription data, a single file, each line is an entity description. It should be BPE encoded and binarized like introduced in the Preprocessing for KE data
  • --ckpt_dir: path of the KEPLER checkpoint.
  • --ckpt: filename of the KEPLER checkpoint.
  • --dict: path to thedict.txt file.
  • --ent_emb: filename to dump entity embeddings (in numpy format).
  • --rel_emb: filename to dump relation embeddings (in numpy format).
  • --batch_size: batch size used in inference.

Then use evaluate_transe_transductive.py and ke_tool/evaluate_transe_inductive.py for KE evaluation. The arguments are as following:

  • --entity_embeddings: a numpy file storing the entity embeddings.
  • --relation_embeddings: a numpy file storing the relation embeddings.
  • --dim: the dimension of the relation and entity embeddings.
  • --entity2id: a json file that maps entity names (in the dataset) to the ids in the entity embedding numpy file, where the key is the entity names in the dataset, and the value is the id in the numpy file.
  • --relation2id: a json file that maps relation names (in the dataset) to the ids in the relation embedding numpy file.
  • --dataset: the test data file.
  • --train_dataset: the training data file (only for transductive setting).
  • --val_dataset: the validation data file (only for transductive setting).

Citation

If the codes help you, please cite our paper:

@article{wang2021KEPLER,
  title={KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation},
  author={Xiaozhi Wang and Tianyu Gao and Zhaocheng Zhu and Zhengyan Zhang and Zhiyuan Liu and Juanzi Li and Jian Tang},
  journal={Transactions of the Association for Computational Linguistics},
  year={2021},
  volume={9},
  doi = {10.1162/tacl_a_00360},
  pages={176-194}
}

These codes are developed on top of fairseq and GraphVite:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
@inproceedings{zhu2019graphvite,
    title={GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding},
     author={Zhu, Zhaocheng and Xu, Shizhen and Qu, Meng and Tang, Jian},
     booktitle={The World Wide Web Conference},
     pages={2494--2504},
     year={2019},
     organization={ACM}
 }
Owner
THU-KEG
THU-KEG
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021