This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Overview

Visual Attributes in the Wild (VAW)

This repository provides data for the VAW dataset as described in the CVPR 2021 Paper:

Learning to Predict Visual Attributes in the Wild

Khoi Pham, Kushal Kafle, Zhihong Ding, Zhe Lin, Quan Tran, Scott Cohen, Abhinav Shrivastava

VAW Main Image

Dataset Setup

Our VAW dataset is partly based on the annotations in the GQA and the VG-PhraseCut datasets.
Therefore, the images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets. This section outlines the annotation format and basic statistics of our dataset.

Annotation Format

The annotations are found in data/train_part1.json, data/train_part2.json , data/val.json and data/test.json for train (split into two parts to circumvent github file-size limit) , validation and test splits in the VAW dataset respectively. The files consist of the following fields:

image_id: int (Image ids correspond to respective Visual Genome image ids)
instance_id: int (Unique instance ID)
instance_bbox: [x, y, width, height] (Bounding box co-ordinates for the instance)
instance_polygon: list of [x y] (List of vertices for segmentation polygon if exists else None)
object_name: str (Name of the object for the instance)
positive_attributes: list of str (Explicitly labeled positive attributes for the instance)
negative_attributes: list of str (Explicitly labeled negative attributes for the instance)

Download Images

The images can be downloaded from the Visual Genome website. The image_id field in our dataset corresponds to respective image ids in the v1.4 in the Visual Genome dataset.

Explore Data and View Live Demo

Head over to our accompanying website to explore the dataset. The website allows exploration of the VAW dataset by filtering our annotations by objects, positive attributes, or negative attributes in the train/val set. The website also shows interactive demo for our SCoNE algorithm as described in our paper.

Dataset Statistics

Basic Stats

Detail Stat
Number of Instances 260,895
Number of Total Images 72,274
Number of Unique Attributes 620
Number of Object Categories 2260
Average Annotation per Instance (Overall) 3.56
Average Annotation per Instance (Train) 3.02
Average Annotation per Instance (Val) 7.03

Evaluation

The evaluation script is provided in eval/evaluator.py. We also provide eval/eval.py as an example to show how to use the evaluation script. In particular, eval.py expects as input the followings:

  1. fpath_pred: path to the numpy array pred of your model prediction (shape (n_instances, n_class)). pred[i,j] is the predicted probability for attribute class j of instance i. We provide eval/pred.npy as a sample for this, which is the output of our best model (last row of table 2) in the paper.
  2. fpath_label: path to the numpy array gt_label that contains the groundtruth label of all instances in the test set (shape (n_instances, n_class)). gt_label[i,j] equals 1 if instance i is labeled positive with attribute j, equals 0 if it is labeled negative with attribute j, and equals 2 if it is unlabeled for attribute j. We provide eval/gt_label.npy as a sample for this, which we have created from data/test.json.
  3. Other files in folder data which have been set with default values in eval/eval.py.

From the eval folder, run the evaluation script as follows:

python eval.py --fpath_pred pred.npy --fpath_label gt_label.npy

We recently updated the grouping of attributes, So, there is a small discrepancy between the scores of our eval/pred.npy versus the numbers reported in the paper on each attribute group. A detailed attribute-wise breakdown will also be saved in a format shown in eval/output_detailed.txt.

Citation

Please cite our CVPR 2021 paper if you use the VAW dataset or the SCoNE algorithm in your work.

@InProceedings{Pham_2021_CVPR,
    author    = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
    title     = {Learning To Predict Visual Attributes in the Wild},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13018-13028}
}

Disclaimer and Contact

This dataset contains objects labeled with a variety of attributes, including those applied to people. Datasets and their use are the subject of important ongoing discussions in the AI community, especially datasets that include people, and we hope to play an active role in those discussions. If you have any feedback regarding this dataset, we welcome your input at [email protected]

You might also like...
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Comments
  • Attribute super-class

    Attribute super-class

    Hi, Thank you for releasing the attribute annotations. A am very interested in the dataset. Are you also planning to release the superclass list of attributes from the paper (the Class imbalance and Attribute types)? And could you provide your evaluation code to reproduce your results and use the dataset?

    Best, Maria

    question 
    opened by mabravo641 1
  • Inference details

    Inference details

    Hi @kushalkafle, thanks for your great works of VAW and LSA. And I have some questions about the inference details of the SCoNE and TAP. During inference, For SCoNE, did you crop out the object region first and then evaluate the precision of the method for each bounding box? For TAP and OpenTAP, did you just input the test image and multi objects with bounding boxes, then the model will output the attributes of each object? I wonder if the above conjectures match the real experimental design. Looking forward to your reply and thanks in advance!

    opened by waveboo 0
  • object name embedding

    object name embedding

    Hi, I am a little confused about the object embedding procedure. As mentioned in the paper, GloVe 100-d word embeddings are used as the object name embedding. However, some of the object names are not contained in the Glove embeddings. How to tackle these names? For example, 'american flag', "boy's arm", 'two suitcases', 'computer keyboard', 'larger horse', 'living room wall', 'navy blue shirt', 'of the aisle', 'hotdog bun', 'train station', 'skull picture', 'disney princess', 'neck tie'.

    Thanks.

    opened by GriffinLiang 0
Releases(v1.0)
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022