General purpose Slater-Koster tight-binding code for electronic structure calculations

Overview

tight-binder

Introduction

General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code is yet to be finished: so far the modules include the strictly necessary routines to compute band structures without additional information. It is designed to allow band structure calculations of alloys up to two atomic species (provided one gives the corresponding SK amplitudes).

The idea behind the program is to allow calculations simply using the configuration file, without any need to fiddle with the code (although that option is always available). Some examples are provided (cube.txt, chain.txt) which show the parameters needed to run a simulation.

  • Last Update: Added spin-orbit coupling up to d orbitals

Installation

Usage of a virtual environment is recommended to avoid conflicts, specially since this package is still in development so it will experiment changes periodically.

  • From within the root folder of the repository, install the required packages:
$ cd {path}/tightbinder
$ pip install -r requirements.txt
  • Then install the tightbinder package
$ pip install .
  • You can use the application from within the repository, using the bin/app.py program in the following fashion:
$ python bin/app.py {config_file} 

Or since the library is installed, create your own scripts. For now, usage of the app.py program is advised.

Documentation

To generate the documentation, you must have installed GNU Make previously. To do so, simply $ cd docs/source and run $ make html. The documentation will then be created in docs/build/html.

Examples

The folder examples/ contains some basic cases to test that the program is working correcly.

  • One-dimensional chain (1 orbital): To run the example do $ python bin/app.py examples/chain.txt

This model is analytically solvable, its band dispersion relation is:

alt text

  • Bi(111) bilayer: To run it: $python bin/app.py examples/bi(111).txt In this case we use a four-orbital model (s, px, py and pz). Since we are modelling a real material, we need to input some valid Slater-Koster coefficients as well as the spin-orbit coupling amplitude. These are given in [1, 2].

The resulting band structure is:

alt text

Bi(111) bilayers are known to be topological insulators. To confirm this, one can use the routines provided in the topology module to calculate its invariant.

To do so, we can compute its hybrid Wannier centre flow, which results to be:

alt text

The crossing of the red dots indicates that the material is topological. For more complex cases, there is a routine implemented to automatize the counting of crossings, based on [3].

Workroad

The future updates will be:

  • hamiltonian.py: Module for inititializing and solving the Hamiltonian of the system given in the config. file
  • topology.py: This module will include routines for computing topological invariants of the system. (19/12/20) Z2 invariant routines added. It remains to fix routines related to Chern invariant.
  • disorder.py: Module with routines to introduce disorder in the system such as vacancies or impurities

A working GUI might be done in the future

References

Owner
PhD student in Physics
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Vikrant Deshpande 1 Nov 17, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022