A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

Overview

RE2

This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflow implementation: https://github.com/alibaba-edu/simple-effective-text-matching.

Quick Links

Simple and Effective Text Matching

RE2 is a fast and strong neural architecture for general purpose text matching applications. In a text matching task, a model takes two text sequences as input and predicts their relationship. This method aims to explore what is sufficient for strong performance in these tasks. It simplifies many slow components which are previously considered as core building blocks in text matching, while keeping three key features directly available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features.

RE2 achieves performance on par with the state of the art on four benchmark datasets: SNLI, SciTail, Quora and WikiQA, across tasks of natural language inference, paraphrase identification and answer selection with no or few task-specific adaptations. It has at least 6 times faster inference speed compared to similarly performed models.

The following table lists major experiment results. The paper reports the average and standard deviation of 10 runs. Inference time (in seconds) is measured by processing a batch of 8 pairs of length 20 on Intel i7 CPUs. The computation time of POS features used by CSRAN and DIIN is not included.

Model SNLI SciTail Quora WikiQA Inference Time
BiMPM 86.9 - 88.2 0.731 0.05
ESIM 88.0 70.6 - - -
DIIN 88.0 - 89.1 - 1.79
CSRAN 88.7 86.7 89.2 - 0.28
RE2 88.9±0.1 86.0±0.6 89.2±0.2 0.7618 ±0.0040 0.03~0.05

Refer to the paper for more details of the components and experiment results.

Setup

Data used in the paper are prepared as follows:

SNLI

  • Download and unzip SNLI (pre-processed by Tay et al.) to data/orig.
  • Unzip all zip files in the "data/orig/SNLI" folder. (cd data/orig/SNLI && gunzip *.gz)
  • cd data && python prepare_snli.py

SciTail

  • Download and unzip SciTail dataset to data/orig.
  • cd data && python prepare_scitail.py

Quora

  • Download and unzip Quora dataset (pre-processed by Wang et al.) to data/orig.
  • cd data && python prepare_quora.py

WikiQA

  • Download and unzip WikiQA to data/orig.
  • cd data && python prepare_wikiqa.py
  • Download and unzip evaluation scripts. Use the make -B command to compile the source files in qg-emnlp07-data/eval/trec_eval-8.0. Move the binary file "trec_eval" to resources/.

Usage

To train a new text matching model, run the following command:

python train.py $config_file.json5

Example configuration files are provided in configs/:

  • configs/main.json5: replicate the main experiment result in the paper.
  • configs/robustness.json5: robustness checks
  • configs/ablation.json5: ablation study

The instructions to write your own configuration files:

[
    {
        name: 'exp1', // name of your experiment, can be the same across different data
        __parents__: [
            'default', // always put the default on top
            'data/quora', // data specific configurations in `configs/data`
            // 'debug', // use "debug" to quick debug your code  
        ],
        __repeat__: 5,  // how may repetitions you want
        blocks: 3, // other configurations for this experiment 
    },
    // multiple configurations are executed sequentially
    {
        name: 'exp2', // results under the same name will be overwritten
        __parents__: [
            'default', 
            'data/quora',
        ],
        __repeat__: 5,  
        blocks: 4, 
    }
]

To check the configurations only, use

python train.py $config_file.json5 --dry

To evaluate an existed model, use python evaluate.py $model_path $data_file, here's an example:

python evaluate.py models/snli/benchmark/best.pt data/snli/train.txt 
python evaluate.py models/snli/benchmark/best.pt data/snli/test.txt 

Note that multi-GPU training is not yet supported in the pytorch implementation. A single 16G GPU is sufficient for training when blocks < 5 with hidden size 200 and batch size 512. All the results reported in the paper except the robustness checks can be reproduced with a single 16G GPU.

Citation

Please cite the ACL paper if you use RE2 in your work:

@inproceedings{yang2019simple,
  title={Simple and Effective Text Matching with Richer Alignment Features},
  author={Yang, Runqi and Zhang, Jianhai and Gao, Xing and Ji, Feng and Chen, Haiqing},
  booktitle={Association for Computational Linguistics (ACL)},
  year={2019}
}

License

This project is under Apache License 2.0.

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022