Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Overview

Fellowship Prediction

GitHub Profile Comparative Analysis Tool Built with BentoML

Fellowship Prediction Header Logo

Table of Contents:

Winner

This project won the MLH Fellowship Orientation Hackathon - Batch 4 along with other great projects by MLH Fellows. We highly suggest you check them out.

Features

Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Try it now!

Demo Git

Provides you with an extensive analysis on the following features of your profile:

Feature Description
Commits Number of total commits the user made
Contributions Number of repositories where the user made contributions
Followers Number of followers the user has
Forks Number of forks the user has in their repositories
Issues Number of issues the user has raised
Organizations Number of organizations the user is a part of
Repos Number of repositories the user has
Stars Number of stars the user has on their repositories

And gives you a comprehensive score of how similar your GitHub Profile is to an average MLH Fellow's GitHub.

It also shows your statistics in a user-friendly data visualization format for you to gauge the range of your skills and become the next MLH Fellow!

Disclaimer

Dear user, building this application, we were trying our best to provide with data insights into things you can improve through your GitHub Profile. This is a hackakthon project that is built by Open Source Fellows and is not directly affiliated with MLH in any capacity. The positive score in your application does not guarantee your chances of becoming a fellow because there are external things apart from GitHub that affect the decision process.

We also hope that you understand that your GitHub Stats do not affect your value to the community as a developer. We all have different paths to success in our lives, and they do not necessarily involve high scores. Regardless of your numbers, you are going to succeed in your journey.

Technologies Used

Tech Stack Used

We used the following technologies:

  • BentoML along with Heroku to build an API endpoint that calculates the comprehensive score for the user based on a simple query.
  • Flask deployed to Heroku to setup a bridge between the frameworks and collect the input data.
  • React.js served on Firebase to provide user-friendly UI for future MLH fellows to use.

Contributing

To contribute to this open-source project, follow these steps:

  1. Fork the repository.
  2. Create a branch: git checkout -b <branch_name>.
  3. Make your changes and commit them: git commit -m '<commit_message>'.
  4. Push to your branch: git push origin <project_name>/<location>.
  5. Create a pull request.

To work on BentoML:

  1. Go to model/bento_deploy to find necessary files.
  2. Read BentoML Start Guide to learn more about the files.
  3. Improve the BentoML Interface to provide our users with a more accurate score.
  4. Create the BentoML prediction service with python bento_packer.py and commit the saved class from bentoml get IrisClassifier:latest --print-location --quiet.

To work on the Back-End:

  1. Consult scr/server and its README.
  2. Make contributions.

Alternatively: Reach out to one of the Project Contributors for questions.

Demo

YouTube Logo that Leads to our demo

Motivation

We built this project because we wanted to help prospective MLH Fellows with their progress toward a better GitHub profile with solid projects and a record of active work. We also wanted to give them some insights into what an average fellow at MLH looks like.

When we were just aspiring to become MLH Fellows, we would look for different sources of information to know what MLH is looking for in their fellows and better ways to prepare. So we tried to address this issue and hopefully support future fellows on their way to success.

However, we make an important notion that your GitHub Profile does not define you as a developer. Our tool is simply to let you see into the data for areas of potential improvement and keep working toward your goals. We do not consider things like:

  • Personal communication levels
  • Spot availability
  • Match in project interests

The mentioned points affect your chances on becoming a fellow. Unfortunately, there is no way to take them into consideration.

Team

Damir Temir


Damir Temir

Working on the project, I learned the basics of BentoML and deploying the server model to the cloud like Heroku. I also gained some experience in Data Mining and Processing, which is an invaluable skill toward my journey to Machine Learning Engineering.

The contributions I made are:

  • Wrote Jupyter Notebooks where we showcase our work with the GitHub API.
  • Set up a Git repository with active GitHub Projects and proper infrastructure.
  • Mined data on more than 650 fellows in the MLH Fellowship organization.
  • Created a BentoML API node deployed to Heroku for querying.

Aymen Bennabi


Aymen Bennabi

During the hackathon I majorly worked on the Front-End part of the project. I created a friendly UI/UX to collect data and visualize the results. Also, I helped a little bit with the Back-End by creating a facade API to make working with GitHub easier. The new interface adds a level of abstraction that mainly focuses on quantitative data that we needed to do the statistical analysis.

I really enjoyed the Orientation Hackathon. I now feel more confident working with Git/GitHub. I also started learning about functional programming base API (OCamal/dream).

Tasha Kim


Aymen Bennabi

Utilizing BentoML gave us a flexible, high-performance framework to serve, manage, and deploy our model to predict MLH fellowship status using user's GitHub profiles. In particular, I enjoyed working with ML frameworks like Matplotlib, Seaborn, and Pandas, as well as Cloud native deployment services, and API serving that were all packaged into a single service.

Some of my contributions were:

  • Implemented the ANNOVA model as an alternative improved statiscal comparison to the one we are using now. Our current one works fine, but we can use this in the case we want a more rigorous and detailed comparison (multiple pairwise comparison (post hoc comparison) analysis for all unplanned comparison using Tukey’s honestly significantly differenced (HSD) test).
  • Built a CI (continuous integration) pipeline for build, run, and testing of our node app as well as python app using github actions.
  • Implemented method to compute average statistics for aggregated mlh fellow data.

Shout out to everyone in our team!

Eyimofe Ogunbiyi


Eyimofe Bennabi

I worked on the Back-End Server for the project and the deployment pipeline on Heroku. I was able to use the Flask Rest Framework for the Back-End which was a new experience for me.

License

This project is served under the MIT License.

MIT License

Copyright (c) 2021 Damir Temir

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Xi Dongbo 78 Nov 29, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022