[ICLR'21] Counterfactual Generative Networks

Overview

Counterfactual Generative Networks

[Project] [PDF] [Blog] [Music Video] [Colab]

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual images, you can try out the Colab below.

CGN

If you find our code or paper useful, please cite

@inproceedings{Sauer2021ICLR,
 author =  {Axel Sauer, Andreas Geiger},
 title = {Counterfactual Generative Networks},
 booktitle = {International Conference on Learning Representations (ICLR)},
 year = {2021}}

Setup

Install anaconda (if you don't have it yet)

wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
bash Anaconda3-2020.11-Linux-x86_64.sh
source ~/.profile

Clone the repo and build the environment

git clone https://github.com/autonomousvision/counterfactual_generative_networks
cd counterfactual_generative_networks
conda env create -f environment.yml
conda activate cgn

Make all scripts executable: chmod +x scripts/*. Then, download the datasets (colored MNIST, Cue-Conflict, IN-9) and the pre-trained weights (CGN, U2-Net). Comment out the ones you don't need.

./scripts/download_data.sh
./scripts/download_weights.sh

MNISTs

The main functions of this sub-repo are:

  • Generating the MNIST variants
  • Training a CGN
  • Generating counterfactual datasets
  • Training a shape classifier

Train the CGN

We provide well-working configs and weights in mnists/experiments. To train a CGN on, e.g., Wildlife MNIST, run

python mnists/train_cgn.py --cfg mnists/experiments/cgn_wildlife_MNIST/cfg.yaml

For more info, add --help. Weights and samples will be saved in mnists/experiments/.

Generate Counterfactual Data

To generate the counterfactuals for, e.g., double-colored MNIST, run

python mnists/generate_data.py \
--weight_path mnists/experiments/cgn_double_colored_MNIST/weights/ckp.pth \
--dataset double_colored_MNIST --no_cfs 10 --dataset_size 100000

Make sure that you provide the right dataset together with the weights. You can adapt the weight-path to use your own weights. The command above generates ten counterfactuals per shape.

Train the Invariant Classifier

The classifier training uses Tensor datasets, so you need to save the non-counterfactual datasets as tensors. For DATASET = {colored_MNIST, double_colored_MNIST, wildlife_MNIST}, run

python mnists/generate_data.py --dataset DATASET

To train, e.g., a shape classifier (invariant to foreground and background) on wildlife MNIST, run,

python mnists/train_classifier.py --dataset wildlife_MNIST_counterfactual

Add --help for info on the available options and arguments. The hyperparameters are unchanged for all experiments.

ImageNet

The main functions of this sub-repo are:

  • Training a CGN
  • Generating data (samples, interpolations, or a whole dataset)
  • Training an invariant classifier ensemble

Train the CGN

Run

python imagenet/train_cgn.py --model_name MODEL_NAME

The default parameters should give you satisfactory results. You can change them in imagenet/config.yml. For more info, add --help. Weights and samples will be saved in imagenet/data/MODEL_NAME.

Generate Counterfactual Data

Samples. To generate a dataset of counterfactual images, run

python imagenet/generate_data.py --mode random --weights_path imagenet/weights/cgn.pth \
--n_data 100 --weights_path imagenet/weights/cgn.pth --run_name RUN_NAME \
--truncation 0.5 --batch_sz 1

The results will be saved in imagenet/data. For more info, add --help. If you want to save only masks, textures, etc., you need to change this directly in the code (see line 206).

The labels will be stored in a csv file. You can read them as follows:

import pandas as pd
df = pd.read_csv(path, index_col=0)
df = df.set_index('im_name')
shape_cls = df['shape_cls']['RUN_NAME_0000000.png']

Generating a dataset to train a classfier. Produce one dataset with --run_name train, the other one with --run_name val. If you have several GPUs available, you can index the name, e.g., --run_name train_GPU_NUM. The class ImagenetCounterfactual will glob all these datasets and generate a single, big training set. Make sure to set --batch_sz 1. With a larger batch size, a batch will be saved as a single png; this is useful for visualization, not for training.

Interpolations. To generate interpolation sheets, e.g., from a barn (425) to whale (147), run

python imagenet/generate_data.py --mode fixed_classes \
--n_data 1 --weights_path imagenet/weights/cgn.pth --run_name barn_to_whale \
--truncation 0.3 --interp all --classes 425 425 425 --interp_cls 147 --save_noise

You can also do counterfactual interpolations, i.e., interpolating only over, e.g., shape, by setting --interp shape.

Interpolation Gif. To generate a gif like in the teaser (Sample an image of class $1, than interpolate to shape $2, then background $3, then shape $4, and finally back to $1), run

./scripts/generate_teaser_gif.sh 992 293 147 330

The positional arguments are the classes, see imagenet labels for the available options.

Train the Invariant Classifier Ensemble

Training. First, you need to make sure that you have all datasets in imagenet/data/. Download Imagenet, e.g., from Kaggle, produce a counterfactual dataset (see above), and download the Cue-Conflict and BG-Challenge dataset (via the download script in scripts).

To train a classifier on a single GPU with a pre-trained Resnet-50 backbone, run

python imagenet/train_classifier.py -a resnet50 -b 32 --lr 0.001 -j 6 \
--epochs 45 --pretrained --cf_data CF_DATA_PATH --name RUN_NAME

Again, add --help for more information on the possible arguments.

Distributed Training. To switch to multi-GPU training, run echo $CUDA_VISIBLE_DEVICES to see if the GPUs are visible. In the case of a single node with several GPUs, you can run, e.g.,

python imagenet/train_classifier.py -a resnet50 -b 256 --lr 0.001 -j 6 \
--epochs 45 --pretrained --cf_data CF_DATA_PATH --name RUN_NAME \
--rank 0 --multiprocessing-distributed --dist-url tcp://127.0.0.1:8890 --world-size 1

If your setup differs, e.g., several GPU machines, you need to adapt the rank and world size.

Visualization. To visualize the Tensorboard outputs, run tensorboard --logdir=imagenet/runs and open the local address in your browser.

Acknowledgments

We like to acknowledge several repos of which we use parts of code, data, or models in our implementation:

Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022