Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Related tags

Deep Learningpptod
Overview

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang

Code our PPTOD paper: Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Introduction:

Pre-trained language models have been recently shown to benefit task-oriented dialogue (TOD) systems. Despite their success, existing methods often formulate this task as a cascaded generation problem which can lead to error accumulation across different sub-tasks and greater data annotation overhead. In this study, we present PPTOD, a unified model that seamlessly supports both task-oriented dialogue understanding and response generation in a plug-and-play fashion. In addition, we introduce a new dialogue multi-task pre-training strategy that allows the model to learn the primary TOD task completion skills from heterogeneous dialog corpora. We extensively test our model on three benchmark TOD tasks, including end-to-end dialogue modelling, dialogue state tracking, and intent classification. Results show that PPTOD creates new state-of-the-art on all evaluated tasks in both full training and low-resource scenarios. Furthermore, comparisons against previous SOTA methods show that the responses generated by PPTOD are more factually correct and semantically coherent as judged by human annotators.

Alt text

1. Citation

If you find our paper and resources useful, please kindly cite our paper:

  @article{su2021multitask,
    author    = {Yixuan Su and
                 Lei Shu and
                 Elman Mansimov and
                 Arshit Gupta and
                 Deng Cai and
                 Yi{-}An Lai and
                 Yi Zhang},
    title     = {Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System},
    journal   = {CoRR},
    volume    = {abs/2109.14739},
    year      = {2021},
    url       = {https://arxiv.org/abs/2109.14739},
    eprinttype = {arXiv},
    eprint    = {2109.14739}
  }

2. Environment Setup:

pip3 install -r requirements.txt
python -m spacy download en_core_web_sm

3. PPTOD Checkpoints:

You can download checkpoints of PPTOD with different configurations here.

PPTOD-small PPTOD-base PPTOD-large
here here here

To use PPTOD, you should download the checkpoint you want and unzip it in the ./checkpoints directory.

Alternatively, you can run the following commands to download the PPTOD checkpoints.

(1) Downloading Pre-trained PPTOD-small Checkpoint:

cd checkpoints
chmod +x ./download_pptod_small.sh
./download_pptod_small.sh

(2) Downloading Pre-trained PPTOD-base Checkpoint:

cd checkpoints
chmod +x ./download_pptod_base.sh
./download_pptod_base.sh

(3) Downloading Pre-trained PPTOD-large Checkpoint:

cd checkpoints
chmod +x ./download_pptod_large.sh
./download_pptod_large.sh

4. Data Preparation:

The detailed instruction for preparing the pre-training corpora and the data of downstream TOD tasks are provided in the ./data folder.

5. Dialogue Multi-Task Pre-training:

To pre-train a PPTOD model from scratch, please refer to details provided in ./Pretraining directory.

6. Benchmark TOD Tasks:

(1) End-to-End Dialogue Modelling:

To perform End-to-End Dialogue Modelling using PPTOD, please refer to details provided in ./E2E_TOD directory.

(2) Dialogue State Tracking:

To perform Dialogue State Tracking using PPTOD, please refer to details provided in ./DST directory.

(3) Intent Classification:

To perform Intent Classification using PPTOD, please refer to details provided in ./IC directory.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022