MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Overview

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Mediapipe, Google tarafından oluşturulan makine öğrenimi çözümleri oluşturmak kullandığımız açık kaynaklı bir frameworktür. MediaPipe modüler yapısı sayesinde bize kullanımı kolay ve hızlı uygulanabilir bir yapı sunuyor. Bir çok platformda kullanılmasıda büyük bir avantaj sağlıyor.
Aşağıdak resimde mediapipe ile oluşturabileceğimiz bazı modeller bulunuyor. Bunları ayrıca incelemek için https://google.github.io/mediapipe/ adresini ziyaret edebilirsiniz. image

Burada bulunan çözümleri kullanarak bizde Hand,Face Detection, Face Mesh, Pose modelleri oluşturacağız. Bunları daha sonra kullanmak için modüler bir yapı kullanacağız. Adım adım ilerleyelim.

Kullanacağımız Kütüphaneler

MediaPipe kütüphanesini yüklemek için terminale "pip install mediapipe" yazabilirsiniz. Bununlar birlikte videolardan üzerinde yapacağımız işlemleri de opencv kütüphanesi ile yapacağız. OpenCV kurmak içinde pip install opencv-python yazabilirsiniz.

Hands

image
Elin şeklini ve hareketleri anlamak için bu modülü kullanacağız. MediaPipe Hands birden fazla modelin birlikte çalışması ile oluşuyor. Burada modellerden biri Palm Detection diğeri Hand Landmarks . Palm Detection modeli elin bulunduğu kısmı keser ve Hand Landmarks modeli elde bulunan noktaları detect etmeye çalışır. Elin croplanması sayesinde Landmark modeli daha başarı bir sonuç ortaya koyar.
Aşağıdaki resimde elde tespit edilecek landmarkları görebilirsiniz. image

Modüler bir yapı oluşturmak istediğimi söylemiştim. Bu sebeple HandTracking adında bir sınıf oluşturalım. Bunu sınıf içerisinde "init" metodu ile alacağımız parametreleri belirtelim. Bu parametlerelin ayrıntılı açıklamasını "https://google.github.io/mediapipe/solutions/hands.html" adresinden öğrenebilirsiniz.

Öncelikle hands adında bir değişken oluşturalım bu değişken ile hands sınıfındaki metotlara erişebileceğiz. Daha sonra elde ettiğimiz landmarkları çizim yaparken kullanmak için mp_drawing nesnesini oluşturuyoruz. image

find() adında image ve draw parametleri alan bir fonksiyon oluşturalım. Burada image değişkeni videodan aldığımız frameleri temsil ediyor, draw değişkenine ise default olarak True değerini verdik, video üzerinde çizim göstermek istemezsek bunu False yapabiliriz.

MediaPipe alınan imagelerin RGB formatında olmasını istiyor. Biz Opencv ile okuduğumuz videoları BGR olarak okuyoruz. Bu sebeple cvtColor metodu ile imagei RGB ye çeviriyoruz. Oluşturduğumuz hands nesnesinin process metodunu kullarak handtracking işlemini başlatıyoruz. Buradan aldığımız bilgileri result değişkeninde tutuyoruz. Result değişkeni içerisinde detect edilen eller ve bu ellerin landmarkları bulunuyor.For döngüsü ile detect edilen ellerin landmarklarını alıyoruz. Tüm bu aldığımız bilgileri mp_drawing objesinin draw_landmarks metodunu kullanarak çizdiriyoruz. Burada mp_hans.HAND_CONNECTIONS ile landmarklar arasında çizgiler çekiyoruz. Daha sonra kullanmak için img döndürüyoruz. image

Hand Videos

Aşağıdak videolarda sonuçları inceleyebilirsiniz.

Pose

image

Videolar kullanarak pose tahmini ile yapılan egzersizlerin doğruluğunun kontrol edilmesi, işaret dili, vucut hareketlerimizi kullanabileceğimiz uygulamalar gibi bir çok alanda bize faydası olabilir. MediaPipe kütüphanesinde bulunan Pose sınıfıda bunu bizim için oldukça kolay hale getiriyor. 33 farklı 3 boyutlu landmarkı pose modelini kullanarak tespit edebiliyoruz.

image

Yine Hands modelinde olduğu gibi 2 farklı model bulunuyor modellerden biri landmarkların tespit edilmesi biri pose estimation yapılacak insanın tespit edilmesinde kullanıyor. Croplanan image sayesinde landmarkların yüksek doğruluk oranıyla detect edilmesi sağlanıyor.

Pose modelinde de daha sonra kullanmak için bir sınıf oluşturacağız. Modules klasörü altında Pose adında bir python dosyası oluşturalım. Bu python dosyasının içersinde "PoseDetection" adında bir sınıf oluşturalım. Burada bir çok parametre bulunuyor. Şimdilik bu parametreleri değiştirmemize gerek yok. Parametreler hakkında daha fazla bilgi almak için mediapipe sitesini ziyaret edebilirsiniz. image

Hand modeline çok benzer işlemler uygulayarak find metodumuzu oluşturuyoruz. Landmarkların birleşmesi için mp_pose.POSE_CONNECTIONS parametresini de kullanmayı unutmayalım.
image

VIDEO

Face Detection

image

Mediapipe ile face detection yapmakta oldukça hızlı ve başarılı görünüyor. Yüzde bulunan 6 farklı landmarkın tespit edileside ayrıca sağlanıyor. Bunun yanında bounding box oluşturarak yüzü bir kare içerisine alarak detection işlemini gerçekleştirebiliyoruz. Ayrıca birden fazla yüzün tespit edilemside sağlanıyor.

Burada da aynı hand ve pose kısımlarında ki detection ve drawing objelerimizi oluşturuyoruz. Yine bahsettiğim gibi modüler bir yapı olması için FaceDetectionC adında bir class oluşturdum. image

Öncelikle results.detection ile detection yapılmışmı bunu kontrol edelim. Daha sonra detect edilen yüzleri for döngüsü ile geziyoruz. Yüzün sınırlarına bir kare çizmek için bounding_box bilgisini çekiyoruz. Daha sonra kendi bounding boxımızı oluşturmak için detection dan aldığımız bilgileri imagein height ve widht değerleri ile çarpıyoruz. (detection yapılırken x,y,widht,height değerleri 0 ile 1 arasında veriliyor. Konumların tespit etmek için image'in shape değerleri ile çarpıyoruz.) Aldığımız bbox bilgisi ile cv2.rectangle ile bir kare çiziyoruz. Detection objesi içerisinde bulunan score bilgisinide putText metodu ile ekrana basabiliriz.
image

VIDEO

FACE MESH

image

Face Mesh modelini kullanarak yüzde bulunan 468 3 boyutlu noktayı tespit edebiliz. Burada aldığımız landmarklar ile bir çok işlem gerçekleştirebiliriz. Örneğin son zamanlarda çok kullanılan kamera filtrelerini bu sayede kolayca oluşturabiliriz. image

Yine aynı şekilde bir FaceMeshC adında bir sınıf oluşturalım. Bunun init metodu içerisinde gerekli parametreleri alalım. Aynı şekilde process işlemini başlatmak için gereken objeleri oluşturalım. image
Diğer modellerde yaptığımız gibi mp_draw nesnesini kullanarak çizim işlemini yapalım. image

VIDEO

SONUC Tüm bunları kullanmak için mp_models.py adında bir python dosyası oluşturalım. Burada hangi modeli kullanmak istediğimizi arg olarak verebiliriz. Örn : python mp_models.py hand ile hand detector çalışır ve gönderdiğimiz video üzerinde detect işlemi yapılır daha sonra bu video processed_videos klasörüne kaydedilir. image

which() metoduna argument olarak hangi model adı ilgili sınıftan bir obje oluşturulur. Bu detector objesi ve video show() metoduna gönderilir.

image

show metodunda ise opencv de buluanan VideoCapture metodu ile okunur. İlgili sınıfında find metoduna image gönderilir detection işlemi yapılan ve dönen video kaydedilir.

Owner
Burak Bagatarhan
Burak Bagatarhan
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022