Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Overview

Leibniz

DOI Build Status

Leibniz is a python package which provide facilities to express learnable differential equations with PyTorch

We also provide UNet, ResUNet and their variations, especially the Hyperbolic blocks for ResUNet.

Install

pip install leibniz

How to use

Physics-informed

As an example we solve a very simple advection problem, a box-shaped material transported by a constant steady wind.

moving box

import torch as th
import leibniz as lbnz

from leibniz.core3d.gridsys.regular3 import RegularGrid
from leibniz.diffeq import odeint as odeint


def binary(tensor):
    return th.where(tensor > lbnz.zero, lbnz.one, lbnz.zero)

# setup grid system
lbnz.bind(RegularGrid(
    basis='x,y,z',
    W=51, L=151, H=51,
    east=16.0, west=1.0,
    north=6.0, south=1.0,
    upper=6.0, lower=1.0
))
lbnz.use('x,y,z') # use xyz coordinate

# giving a material field as a box 
fld = binary((lbnz.x - 8) * (9 - lbnz.x)) * \
      binary((lbnz.y - 3) * (4 - lbnz.y)) * \
      binary((lbnz.z - 3) * (4 - lbnz.z))

# construct a constant steady wind
wind = lbnz.one, lbnz.zero, lbnz.zero

# transport value by wind
def derivitive(t, clouds):
    return - lbnz.upwind(wind, clouds)

# integrate the system with rk4
pred = odeint(derivitive, fld, th.arange(0, 7, 1 / 100), method='rk4')

UNet, ResUNet and variations

from leibniz.unet import UNet
from leibniz.nn.layer.hyperbolic import HyperBottleneck
from leibniz.nn.activation import CappingRelu

unet = UNet(6, 1, normalizor='batch', spatial=(32, 64), layers=5, ratio=-1,
            vblks=[4, 4, 4, 4, 4], hblks=[1, 1, 1, 1, 1],
            scales=[-1, -1, -1, -1, -1], factors=[1, 1, 1, 1, 1],
            block=HyperBottleneck, relu=CappingRelu(), final_normalized=False)

We provide a ResUNet implementation, which is a UNet variation can insert ResNet blocks between layers. The supported ResNet blocks are include

  • Pure ResNet: Basic, Bottleneck block
  • SENet variations: Basic, Bottleneck block
  • Hyperbolic variations: Basic, Bottleneck block

We support 1d, 2d, 3d UNet.

normalizor are include:

  • batch: BatchNorm
  • layer: LayerNorm
  • instance: InstanceNorm

Other hyperparameters are include:

  • spatial: the sizes of the spatial dimentions
  • ratio: the ratio to decide the intial number of channels into the UNet
  • vblks: how many vertical blocks is inserted between two layers
  • hblks: how many horizontal blocks is inserted in the skip connections
  • scales: scale factors(power-2-based) on the spatial dimentions
  • factors: expand or shrink factors(power-2-based) on the channels
  • final_normalized: wheather to scale to final result between 0 to 1

Piecewise Linear normalizor

Piecewise Linear normalizor provide an learnable monotonic peicewise linear functions and its inverse fucntion. The API is shown as below

from leibniz.nn.normalizor import PWLNormalizor

# on 3 channels, given 128 segmented pieces, and assuming the input data have a zero mean and 1.0 std
pwln = PWLNormalizor(3, 128, mean=0.0, std=1.0)

normed = pwln(input)
output = pwln.inverse(normed)

How to release

python3 setup.py sdist bdist_wheel
python3 -m twine upload dist/*

git tag va.b.c master
git push origin va.b.c

Contributors

Acknowledge

We included source code with minor changes from torchdiffeq by Ricky Chen, because of two purpose:

  1. package torchdiffeq is not indexed by pypi
  2. package torchdiffeq is very convenient and mandatory

All our contribution is based on Ricky's Neural ODE paper (NIPS 2018) and his package.

You might also like...
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Reproduce partial features of DeePMD-kit using PyTorch.
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

Releases(v0.1.42)
  • v0.1.42(Aug 14, 2021)

  • v0.1.41(Aug 13, 2021)

    Leibniz is a python package which provide facilities to express learnable differential equations with PyTorch. We also provide UNet, ResUNet and their variations, especially the Hyperbolic blocks for ResUNet.

    Source code(tar.gz)
    Source code(zip)
Owner
Beijing ColorfulClouds Technology Co.,Ltd.
彩云科技
Beijing ColorfulClouds Technology Co.,Ltd.
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022