Python Multithreading without GIL

Overview

Python Multithreading without GIL

Copyright (c) 2001-2020 Python Software Foundation. All rights reserved.

See Doc/license.rst for copyright and license information.

Overview

This is a proof-of-concept implementation of CPython that supports multithreading without the global interpreter lock (GIL). An overview of the design is described in the Python Multithreading without GIL Google doc.

Installation from source

The proof-of-concept works best on Linux x86-64. It also builds on Linux ARM64, Windows (64-bit), and macOS, but you will have to recompile extension modules yourself for these platforms.

The build process has not changed from upstream CPython. See https://devguide.python.org/ for instructions on how to build from source, or follow the steps below.

Install:

./configure [--prefix=PREFIX] [--enable-optimizations]
make -j
make install

The optional --prefix=PREFIX specifies the destination directory for the Python installation. The optional --enable-optimizations enables profile guided optimizations (PGO). This slows down the build process, but makes the compiled Python a bit faster.

Docker

A pre-built Docker image colesbury/python-nogil is available on Docker Hub.

Packages

Use pip install as usual to install packages. Please file an issue if you are unable to install a pip package you would like to use.

The proof-of-concept comes with a modified bundled "pip" that includes an alternative package index. The alternative package index includes C extensions that are either slow to build from source or require some modifications for compatibility.

GIL control

The GIL is disabled by default, but if you wish, you can enable it at runtime using the environment variable PYTHONGIL=1. You can check if the GIL is disabled from Python by accessing sys.flags.nogil:

python3 -c "import sys; print(sys.flags.nogil)"  # True
PYTHONGIL=1 python3 -c "import sys; print(sys.flags.nogil)"  # False

Example

You can use the existing Python APIs, such as the threading module and the ThreadPoolExecutor class.

Here is an example based on Larry Hastings's Gilectomy benchmark:

import sys
from concurrent.futures import ThreadPoolExecutor

print(f"nogil={getattr(sys.flags, 'nogil', False)}")

def fib(n):
    if n < 2: return 1
    return fib(n-1) + fib(n-2)

threads = 8
if len(sys.argv) > 1:
    threads = int(sys.argv[1])

with ThreadPoolExecutor(max_workers=threads) as executor:
    for _ in range(threads):
        executor.submit(lambda: print(fib(34)))

Run it with, e.g.:

time python3 fib.py 1   # 1 thread, 1x work
time python3 fib.py 20  # 20 threads, 20x work

The program parallelizes well up to the number of available cores. On a 20 core Intel Xeon E5-2698 v4 one thread takes 1.50 seconds and 20 threads take 1.52 seconds [1].

[1] Turbo boost was disabled to measure the scaling of the program without the effects of CPU frequency scaling. Additionally, you may get more reliable measurements by using taskset to avoid virtual "hyperthreading" cores.

Comments
  • Fatal error python

    Fatal error python

    Hi yesterday i compile nogil python version and i found an unexpected behavior.

    On startup my application prints

    gc_get_refs(gc): -1
    gc_get_refs(gc): -1
    gc_get_refs(gc): -1
    gc_get_refs(gc): -1
    gc_get_refs(gc): -1
    Process started (my app output)
    gc_get_refs(gc): -1
    gc_get_refs(gc): -1
    

    and then after some minutes my app crashed with error:

    Fatal Python error: _Py_queue_object: _Py_queue_object called with unowned object
    Python runtime state: initialized
    
    opened by AYMENJD 14
  • Error: Stack smashing detected.

    Error: Stack smashing detected.

    Hi, last days my program crash on high load (when users get active) and i get error:

    *** stack smashing detected ***: <unknown> terminated
    

    And i don't know how track this. Also i only get it when my application receive much client updates.

    Is there a way i can fix this or do anything?

    opened by AYMENJD 11
  • Track a more recent upstream version of CPython that supports the Apple M1 platform?

    Track a more recent upstream version of CPython that supports the Apple M1 platform?

    I would like to test this experimental branch on a regular basis on my Apple M1 dev laptop when working on the Scientific Python / PyData related projects so as to be able to report problems or performance improvements encountered with practical application cases.

    However the build setup in this branch is a bit too old and the configure refuses to generate the Makefile for this platform:

    ./configure --with-openssl=$(brew --prefix openssl)
    checking for git... found
    checking build system type... Invalid configuration `arm64-apple-darwin20.0.0': machine `arm64-apple' not recognized
    configure: error: /bin/sh ./config.sub arm64-apple-darwin20.0.0 failed
    

    Would it be possible to sync with branch with a more recent version of CPython (e.g. 3.10)?

    EDIT: the error above was probably observed with a version of clang installed from conda-forge. I get a different error at build time when using the system compiler instead, see the discussion below: https://github.com/colesbury/nogil/issues/36#issuecomment-1046302795

    opened by ogrisel 10
  • Inability to compile on Windows.

    Inability to compile on Windows.

    Hello, I am trying to compile nogil on Windows which is endping with LNK2019 and LNK1120 errors. I am using VisualStudio Code 2017. errors

    Do you know what might be a reason?

    opened by ChefJodlak 9
  • Can not import pydantic with latest docker image

    Can not import pydantic with latest docker image

    I get an error when trying to import pydantic using the latest image.

    pip.log

    [email protected]:~# python3
    Python 3.9.0a4+ (default, Oct 17 2021, 19:16:30)
    [GCC 10.2.1 20210110] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from pydantic import BaseModel
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "pydantic/__init__.py", line 2, in init pydantic.__init__
      File "pydantic/dataclasses.py", line 7, in init pydantic.dataclasses
        import builtins
      File "pydantic/main.py", line 376, in init pydantic.main
      File "pydantic/main.py", line 369, in pydantic.main.ModelMetaclass.__new__
      File "pydantic/utils.py", line 205, in pydantic.utils.generate_model_signature
      File "/usr/local/lib/python3.9/inspect.py", line 3076, in signature
        return Signature.from_callable(obj, follow_wrapped=follow_wrapped)
      File "/usr/local/lib/python3.9/inspect.py", line 2825, in from_callable
        return _signature_from_callable(obj, sigcls=cls,
      File "/usr/local/lib/python3.9/inspect.py", line 2280, in _signature_from_callable
        return _signature_from_builtin(sigcls, obj,
      File "/usr/local/lib/python3.9/inspect.py", line 2091, in _signature_from_builtin
        raise ValueError("no signature found for builtin {!r}".format(func))
    ValueError: no signature found for builtin <cyfunction BaseModel.__init__ at 0x58f257d9bd0>
    
    opened by renan-r-santos 8
  • unable to install tensorflow with nogil

    unable to install tensorflow with nogil

    It seems that nogil has compatability with tensorflow package. I have a python script that has tensorflow as its dependency, but when I try to run it with nogil, it reports error. Do you have any ideas about how to fix this compatability. Thanks!

    ErrorMsg: python3 -m pip install tensorflow Looking in indexes: https://d1yxz45j0ypngg.cloudfront.net/, https://pypi.org/simple ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none) ERROR: No matching distribution found for tensorflow

    opened by zigzagcai 7
  • Segfault with profiling a scikit-learn pipeline with viztracer

    Segfault with profiling a scikit-learn pipeline with viztracer

    The following happens when using the issue56 branch as discussed in #56.

    $ viztracer --tracer_entries 10000002 ~/code/sanbox/spline_pipeline_randomized_search.py 
    sys.version='3.9.10 (heads/issue56:851b1aac3e, May  2 2022, 11:56:36)\n[nogil, GCC 11.2.0]', joblib_backend_name='threading', n_jobs=8, nogil=True
    Fitting 5 folds for each of 3 candidates, totalling 15 fits
    Segmentation fault (core dumped)
    

    Here is the source code of spline_pipeline_randomized_search.py:

    import sys
    from time import perf_counter
    import numpy as np
    from scipy.sparse import csr_matrix
    from sklearn.datasets import fetch_covtype
    from sklearn.preprocessing import QuantileTransformer
    from sklearn.preprocessing import SplineTransformer
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.kernel_approximation import Nystroem
    from sklearn.linear_model import SGDClassifier
    from sklearn.pipeline import Pipeline
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.model_selection import train_test_split
    from joblib import parallel_backend
    from threadpoolctl import threadpool_limits
    
    
    nogil = getattr(sys.flags, "nogil", False)
    joblib_backend_name = "threading" if nogil else "loky"
    n_jobs = 8
    
    print(f"{sys.version=}, {joblib_backend_name=!r}, {n_jobs=}, {nogil=}")
    
    X, y = fetch_covtype(return_X_y=True, as_frame=False)
    X = X[:, :5]
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=2_000, test_size=10_000, random_state=0
    )
    
    pipeline = Pipeline(
        [
            ("preproc", None),
            ("splines", SplineTransformer()),
            # ("poly", PolynomialFeatures(degree=2, interaction_only=True)),
            ("kernel", Nystroem(n_components=300, gamma=1e-3, random_state=0)),
            (
                "classifier",
                SGDClassifier(
                    early_stopping=True,
                    validation_fraction=0.2,
                    n_iter_no_change=5,
                    random_state=0,
                ),
            ),
        ]
    )
    
    
    param_grid = {
        "preproc": [None, QuantileTransformer()],
        "splines__degree": [2, 3, 4],
        "splines__n_knots": [3, 5, 10],
        "kernel__gamma": np.logspace(-5, 3, 100),
        "kernel__n_components": [10, 50, 100, 500],
        "classifier__loss": ["hinge", "log_loss"],
        "classifier__alpha": np.logspace(-5, 1, 100),
    }
    
    tic = perf_counter()
    with parallel_backend(joblib_backend_name, n_jobs=n_jobs):
        with threadpool_limits(limits=1 if nogil else None):
            search = RandomizedSearchCV(
                pipeline,
                param_distributions=param_grid,
                n_iter=3,
                verbose=1,
                random_state=0,
            ).fit(X_train, y_train)
    toc = perf_counter()
    print(f"search completed in {toc - tic:.1f}s")
    print(search.best_params_)
    print(search.score(X_test, y_test))
    

    Here is the gdb backtrace:

    #0  _Py_IncRefShared (op=<unknown at remote 0x5555558aaec8>) at Objects/object.c:2334
    #1  0x00007ffff6d59dd7 in _Py_INCREF (op=<optimized out>) at /home/ogrisel/code/nogil/Include/object.h:517
    #2  snaptrace_tracefunc ([email protected]=<viztracer.Tracer at remote 0x293469ca280>, [email protected]=Frame 0x29349870a90, for file /home/ogrisel/code/nogil/Lib/inspect.py, line 2819, in <genexpr> (), 
        [email protected]=3, [email protected]=('knots', <Parameter at remote 0x29349811d20>)) at src/viztracer/modules/snaptrace.c:387
    #3  0x00005555556a125f in call_profile ([email protected]=0x555555b40d10, frame=Frame 0x29349870a90, for file /home/ogrisel/code/nogil/Lib/inspect.py, line 2819, in <genexpr> (), [email protected]=3, 
        [email protected]=('knots', <Parameter at remote 0x29349811d20>)) at Python/ceval_meta.c:3511
    #4  0x00005555556ab049 in vm_profile ([email protected]=0x555555b40d10, [email protected]=0x293445e6890 "\\\002\002M\001W", acc=..., [email protected]=('knots', <Parameter at remote 0x29349811d20>))
        at Python/ceval_meta.c:3644
    #5  0x00005555556ab148 in vm_trace_handler (ts=0x555555b40d10, last_pc=0x293445e6890 "\\\002\002M\001W", acc=('knots', <Parameter at remote 0x29349811d20>)) at Python/ceval_meta.c:3778
    #6  0x00005555558103c1 in _PyEval_Fast (ts=0x555555b40d10, initial_acc=Register(as_int64 = 10000003), initial_pc=0x293445e6893 "M\001W") at Python/ceval.c:2784
    #7  0x00005555556a97e0 in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x555555b40d10) at Python/ceval_meta.c:2831
    #8  PyEval2_EvalGen ([email protected]=0x293498f0290, opt_value=None) at Python/ceval_meta.c:2862
    #9  0x00005555557c23ac in gen_send_internal (gen=0x293498f0290, opt_value=<optimized out>) at Objects/genobject.c:244
    #10 0x00005555557a63b0 in PyIter_Next ([email protected]=<generator at remote 0x293498f0290>) at Objects/abstract.c:2702
    #11 0x00005555555fbcc1 in PyDict_MergeFromSeq2 ([email protected]=<OrderedDict at remote 0x29349850c10>, [email protected]=<generator at remote 0x293498f0290>, [email protected]=1) at Objects/dictobject.c:1895
    #12 0x00005555555fc178 in dict_update_arg (self=<OrderedDict at remote 0x29349850c10>, arg=<generator at remote 0x293498f0290>) at Objects/dictobject.c:1827
    #13 0x00005555555fc4a9 in dict_update_common (methname=0x555555882419 "dict", kwds=0x0, args=<optimized out>, self=<OrderedDict at remote 0x29349850c10>) at Objects/dictobject.c:1841
    #14 dict_init (self=<OrderedDict at remote 0x29349850c10>, args=<optimized out>, kwds=0x0) at Objects/dictobject.c:2757
    #15 0x00005555556242d7 in type_call (type=<optimized out>, args=(<generator at remote 0x293498f0290>,), kwds=0x0) at Objects/typeobject.c:1044
    #16 0x00005555555c5a6d in _PyObject_MakeTpCall (tstate=0x555555b40d10, callable=<type at remote 0x29343e6fc10>, args=<optimized out>, nargs=1, keywords=0x0) at Objects/call.c:191
    #17 0x00005555556a4bfb in _PyObject_VectorcallTstate (kwnames=0x0, nargsf=<optimized out>, args=0x7fffccc25348, callable=<type at remote 0x29343e6fc10>, tstate=0x555555b40d10)
        at ./Include/cpython/abstract.h:116
    #18 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=<optimized out>, args=0x7fffccc25348, callable=<type at remote 0x29343e6fc10>, tstate=0x555555b40d10) at ./Include/cpython/abstract.h:103
    #19 vm_call_function (ts=0x555555b40d10, acc=...) at Python/ceval_meta.c:1341
    #20 0x000055555581127b in _PyEval_Fast (ts=0x555555b40d10, initial_acc=Register(as_int64 = 10000003), initial_pc=0x293446e9e07 "F\017\001") at Python/ceval.c:982
    #21 0x00005555556a8d2f in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x555555b40d10) at Python/ceval_meta.c:2831
    #22 _PyFunction_Vectorcall (func=<function at remote 0x293447750b0>, stack=0x29349801e48, nargsf=<optimized out>, kwnames=<optimized out>) at Python/ceval_meta.c:3228
    #23 0x00005555555c7e68 in _PyObject_FastCallDictTstate (kwargs={'return_annotation': <type at remote 0x293446eec10>, '__validate_parameters__': False}, nargsf=2, args=0x7fffccc254c0, 
        callable=<function at remote 0x293447750b0>, tstate=0x555555b40d10) at Objects/call.c:129
    #24 _PyObject_Call_Prepend ([email protected]=0x555555b40d10, [email protected]=<function at remote 0x293447750b0>, [email protected]=<Signature at remote 0x293498209d0>, 
        [email protected]=([<Parameter at remote 0x29349811a50>, <Parameter at remote 0x29349811b40>, <Parameter at remote 0x29349811c30>, <Parameter at remote 0x29349811d20>, <Parameter at remote 0x29349811e10>, <Parameter at remote 0x29349811f00>, <Parameter at remote 0x29349811eb0>],), [email protected]={'return_annotation': <type at remote 0x293446eec10>, '__validate_parameters__': False}) at Objects/call.c:387
    #25 0x0000555555631d84 in slot_tp_init (self=<Signature at remote 0x293498209d0>, 
        args=([<Parameter at remote 0x29349811a50>, <Parameter at remote 0x29349811b40>, <Parameter at remote 0x29349811c30>, <Parameter at remote 0x29349811d20>, <Parameter at remote 0x29349811e10>, <Parameter at remote 0x29349811f00>, <Parameter at remote 0x29349811eb0>],), kwds={'return_annotation': <type at remote 0x293446eec10>, '__validate_parameters__': False}) at Objects/typeobject.c:7059
    #26 0x00005555556242d7 in type_call (type=<optimized out>, 
        args=([<Parameter at remote 0x29349811a50>, <Parameter at remote 0x29349811b40>, <Parameter at remote 0x29349811c30>, <Parameter at remote 0x29349811d20>, <Parameter at remote 0x29349811e10>, <Parameter at remote 0x29349811f00>, <Parameter at remote 0x29349811eb0>],), kwds={'return_annotation': <type at remote 0x293446eec10>, '__validate_parameters__': False}) at Objects/typeobject.c:1044
    #27 0x00005555555c5a6d in _PyObject_MakeTpCall (tstate=0x555555b40d10, callable=<type at remote 0x29344574610>, args=<optimized out>, nargs=1, keywords=('return_annotation', '__validate_parameters__'))
        at Objects/call.c:191
    #28 0x00005555556a4981 in _PyObject_VectorcallTstate (kwnames=<optimized out>, nargsf=9223372036854775809, args=0x7fffc0000bf8, callable=<type at remote 0x29344574610>, tstate=0x555555b40d10)
        at ./Include/cpython/abstract.h:116
    #29 _PyObject_VectorcallTstate (kwnames=<optimized out>, nargsf=9223372036854775809, args=0x7fffc0000bf8, callable=<type at remote 0x29344574610>, tstate=0x555555b40d10) at ./Include/cpython/abstract.h:103
    #30 vm_call_cfunction_slow (ts=0x555555b40d10, acc=...) at Python/ceval_meta.c:1296
    #31 0x000055555581127b in _PyEval_Fast (ts=0x555555b40d10, initial_acc=Register(as_int64 = 10000003), initial_pc=0x29343d12c28 "F!\001\002K") at Python/ceval.c:982
    #32 0x00005555556a8d2f in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x555555b40d10) at Python/ceval_meta.c:2831
    #33 _PyFunction_Vectorcall (func=<function at remote 0x29348a982b0>, stack=0x29349900008, nargsf=<optimized out>, kwnames=<optimized out>) at Python/ceval_meta.c:3228
    #34 0x00005555555c7e68 in _PyObject_FastCallDictTstate (
        kwargs={'train': <numpy.ndarray at remote 0x29349291ce0>, 'test': <numpy.ndarray at remote 0x29349291c70>, 'parameters': {'splines__n_knots': 10, 'splines__degree': 4, 'preproc': <QuantileTransformer(n_quantiles=1000, output_distribution='uniform', ignore_implicit_zeros=False, subsample=100000, random_state=None, copy=True) at remote 0x29349196550>, 'kernel__n_components': 500, 'kernel__gamma': <numpy.float64 at remote 0x29348d1f9c0>, 'classifier__loss': 'hinge', 'classifier__alpha': <numpy.float64 at remote 0x29348d1faa0>}, 'split_progress': (1, 5), 'candidate_progress': (0, 3), 'scorer': <function at remote 0x29348eca1f0>, 'fit_params': {}, 'return_train_score': False, 'return_n_test_samples': True, 'return_times': True, 'return_parameters': False, 'error_score': <float at remote 0x29345562380>, 'verbose': 1}, nargsf=4, 
        args=0x7fffccc25760, callable=<function at remote 0x29348a982b0>, tstate=0x555555b40d10) at Objects/call.c:129
    #35 _PyObject_Call_Prepend ([email protected]=0x555555b40d10, cal[email protected]=<function at remote 0x29348a982b0>, 
    

    The py-bt gdb commands returns:

    Traceback (most recent call first):
      File "/home/ogrisel/code/nogil/Lib/inspect.py", line 2819, in <genexpr>
        params = OrderedDict((param.name, param) for param in parameters)
      0x0
    
    opened by ogrisel 7
  • Memory leak when using nogil Cython

    Memory leak when using nogil Cython

    Code to reproduce:

    pip install numpy scipy cython psutil
    git clone https://github.com/scikit-learn/scikit-learn
    cd scikit-learn
    pip install -e .
    
    from sklearn.ensemble import HistGradientBoostingClassifier
    from sklearn.datasets import make_classification
    import psutil
    import gc
    
    
    X, y = make_classification(n_samples=int(1e4), random_state=42)
    print(f"data size: {X.nbytes / 1e6:.1f} MB")
    
    for i in range(5):
        clf = HistGradientBoostingClassifier(max_iter=100).fit(X, y)
        gc.collect()
        print(f"memory usage: {psutil.Process().memory_info().rss / 1e6:.1f} MB")
    

    Using nogil-Cython build of scikit-learn: CPython

    $ OPENMP_NUM_THREADS=1 python ~/code/sanbox/debug_memleak.py 
    data size: 1.6 MB
    memory usage: 701.8 MB
    memory usage: 1290.5 MB
    memory usage: 1878.0 MB
    memory usage: 2466.0 MB
    memory usage: 3053.4 MB
    

    Using scikit-learn installed from conda-forge

    $ OPENMP_NUM_THREADS=1 python ~/code/sanbox/debug_memleak.py 
    data size: 1.6 MB
    memory usage: 124.6 MB
    memory usage: 124.6 MB
    memory usage: 125.1 MB
    memory usage: 125.1 MB
    memory usage: 125.1 MB
    

    Note: this code is using OpenMP-based threading but the leak still happens when disabling the OpenMP threading layer by setting OPENMP_NUM_THREADS=1 so this problem is probably not related to OpenMP.

    Note sure how to debug this. Maybe I could try to use valgrind.

    opened by ogrisel 7
  • Can not install cffi using poetry

    Can not install cffi using poetry

    I just tried to use nogil on my side project, and found out there is an error when installing cffi. Seems like there is a confict between nogil and CPython.

    Origin error message as following,

    Installing cffi (1.15.0): Failed
    
      EnvCommandError
    
      Command ['/workspace/.venv/bin/pip', 'install', '--no-deps', 'file:///root/.cache/pypoetry/artifacts/20/b6/2f/d86d84b144949a7c7435d77e30e4731b66f07f492faac0f75b18bebca7/cffi-1.15.0.tar.gz'] errored with the following return code 1, and output: 
      Processing /root/.cache/pypoetry/artifacts/20/b6/2f/d86d84b144949a7c7435d77e30e4731b66f07f492faac0f75b18bebca7/cffi-1.15.0.tar.gz
      Building wheels for collected packages: cffi
        Building wheel for cffi (setup.py): started
        Building wheel for cffi (setup.py): finished with status 'error'
        ERROR: Command errored out with exit status 1:
         command: /workspace/.venv/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d /tmp/pip-wheel-fies3lsc
             cwd: /tmp/pip-req-build-ned2bb9p/
        Complete output (36 lines):
        running bdist_wheel
        running build
        running build_py
        creating build
        creating build/lib.linux-x86_64-3.9
        creating build/lib.linux-x86_64-3.9/cffi
        copying cffi/commontypes.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/cparser.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/model.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/cffi_opcode.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/recompiler.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/pkgconfig.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/api.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/verifier.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/backend_ctypes.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/vengine_cpy.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/__init__.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/setuptools_ext.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/ffiplatform.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/vengine_gen.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/lock.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/error.py -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/_cffi_include.h -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/parse_c_type.h -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/_embedding.h -> build/lib.linux-x86_64-3.9/cffi
        copying cffi/_cffi_errors.h -> build/lib.linux-x86_64-3.9/cffi
        running build_ext
        building '_cffi_backend' extension
        creating build/temp.linux-x86_64-3.9
        creating build/temp.linux-x86_64-3.9/c
        gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -fPIC -DUSE__THREAD -DHAVE_SYNC_SYNCHRONIZE -I/workspace/.venv/include -I/usr/local/include/python3.9 -c c/_cffi_backend.c -o build/temp.linux-x86_64-3.9/c/_cffi_backend.o
        c/_cffi_backend.c: In function ‘get_unique_type’:
        c/_cffi_backend.c:4638:20: error: ‘PyObject’ {aka ‘struct _object’} has no member named ‘ob_refcnt’
         4638 |     ((PyObject *)x)->ob_refcnt--;
              |                    ^~
        error: command 'gcc' failed with exit status 1
        ----------------------------------------
        ERROR: Failed building wheel for cffi
        Running setup.py clean for cffi
      Failed to build cffi
      Installing collected packages: cffi
          Running setup.py install for cffi: started
          Running setup.py install for cffi: finished with status 'error'
          ERROR: Command errored out with exit status 1:
           command: /workspace/.venv/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-e26e6dwz/install-record.txt --single-version-externally-managed --compile --install-headers /workspace/.venv/include/site/python3.9/cffi
               cwd: /tmp/pip-req-build-ned2bb9p/
          Complete output (36 lines):
          running install
          running build
          running build_py
          creating build
          creating build/lib.linux-x86_64-3.9
          creating build/lib.linux-x86_64-3.9/cffi
          copying cffi/commontypes.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/cparser.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/model.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/cffi_opcode.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/recompiler.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/pkgconfig.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/api.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/verifier.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/backend_ctypes.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/vengine_cpy.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/__init__.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/setuptools_ext.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/ffiplatform.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/vengine_gen.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/lock.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/error.py -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/_cffi_include.h -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/parse_c_type.h -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/_embedding.h -> build/lib.linux-x86_64-3.9/cffi
          copying cffi/_cffi_errors.h -> build/lib.linux-x86_64-3.9/cffi
          running build_ext
          building '_cffi_backend' extension
          creating build/temp.linux-x86_64-3.9
          creating build/temp.linux-x86_64-3.9/c
          gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -fPIC -DUSE__THREAD -DHAVE_SYNC_SYNCHRONIZE -I/workspace/.venv/include -I/usr/local/include/python3.9 -c c/_cffi_backend.c -o build/temp.linux-x86_64-3.9/c/_cffi_backend.o
          c/_cffi_backend.c: In function ‘get_unique_type’:
          c/_cffi_backend.c:4638:20: error: ‘PyObject’ {aka ‘struct _object’} has no member named ‘ob_refcnt’
           4638 |     ((PyObject *)x)->ob_refcnt--;
                |                    ^~
          error: command 'gcc' failed with exit status 1
          ----------------------------------------
      ERROR: Command errored out with exit status 1: /workspace/.venv/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-ned2bb9p/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-e26e6dwz/install-record.txt --single-version-externally-managed --compile --install-headers /workspace/.venv/include/site/python3.9/cffi Check the logs for full command output.
      WARNING: You are using pip version 21.2.4; however, version 21.3 is available.
      You should consider upgrading via the '/workspace/.venv/bin/python -m pip install --upgrade pip' command.
      
    
      at /usr/local/lib/python3.9/site-packages/poetry/utils/env.py:1183 in _run
          1179│                 output = subprocess.check_output(
          1180│                     cmd, stderr=subprocess.STDOUT, **kwargs
          1181│                 )
          1182│         except CalledProcessError as e:
        → 1183│             raise EnvCommandError(e, input=input_)
          1184│ 
          1185│         return decode(output)
          1186│ 
          1187│     def execute(self, bin, *args, **kwargs):
    
    opened by Stiegnate 7
  • Unable install onnxruntime

    Unable install onnxruntime

    System Details:

    OS: Ubuntu 20.04.5 (Linux) CPU: 11th Gen Intel® Core™ i7-11850H @ 2.50GHz × 16

    I'd tried to install onnxruntime in nogil-3.9.10

    image

    Am I need to build ONNXRuntime from the source?

    opened by anandvsr 6
  • Segfault when using viztracer to profile a numpy program

    Segfault when using viztracer to profile a numpy program

    Minimal reproducer:

    $ pip install viztracer numpy
    $ python -m viztracer -c "import numpy"
    Saving trace data, this could take a whileSegmentation fault (core dumped)
    

    Here is the gdb backtrace:

    Saving trace data, this could take a while                                      
    Thread 1 "python" received signal SIGSEGV, Segmentation fault.
    __strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
    77	../sysdeps/x86_64/multiarch/strlen-evex.S: No such file or directory.
    (gdb) bt
    #0  __strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
    #1  0x00007ffff7d23ac9 in __GI__IO_fputs (str=0x0, [email protected]=0x5555559b03c0) at iofputs.c:33
    #2  0x00007ffff6ec6191 in fprintfeename ([email protected]=0x5555559b03c0, [email protected]=0x4be89f6bcf0) at src/viztracer/modules/eventnode.c:163
    #3  0x00007ffff6ec7b32 in snaptrace_dump (self=0x4be7d589e20, args=<optimized out>) at src/viztracer/modules/snaptrace.c:925
    #4  0x00005555557bc6ef in method_vectorcall_VARARGS (func=<method_descriptor at remote 0x4be7d42c190>, args=0x7fffffffd3e8, nargsf=<optimized out>, kwnames=<optimized out>) at Objects/descrobject.c:316
    #5  0x000055555580de52 in _PyEval_Fast (ts=0x5555559b2570, initial_acc=Register(as_int64 = 0), initial_pc=0x5555558d7d2f <func_vector_call> "\t") at Python/ceval.c:737
    #6  0x00005555556a8d1f in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x5555559b2570) at Python/ceval_meta.c:2831
    #7  _PyFunction_Vectorcall (func=<function at remote 0x4be7d7e4390>, stack=0x7fffffffd4a0, nargsf=<optimized out>, kwnames=<optimized out>) at Python/ceval_meta.c:3228
    #8  0x00005555555c7d78 in _PyObject_FastCallDictTstate (kwargs=0x0, nargsf=1, args=0x7fffffffd4a0, callable=<function at remote 0x4be7d7e4390>, tstate=0x5555559b2570) at Objects/call.c:118
    #9  _PyObject_Call_Prepend ([email protected]=0x5555559b2570, [email protected]=<function at remote 0x4be7d7e4390>, 
        [email protected]=<Finalize(_weakref=<weakref at remote 0x4be7bcb7e50>, _callback=<method at remote 0x4be7bcb7db0>, _args=(), _kwargs={}, _key=(-1, 0), _pid=379537) at remote 0x4be7bc778d0>, 
        [email protected]=(), [email protected]=0x0) at Objects/call.c:387
    #10 0x0000555555631bec in slot_tp_call (
        self=<Finalize(_weakref=<weakref at remote 0x4be7bcb7e50>, _callback=<method at remote 0x4be7bcb7db0>, _args=(), _kwargs={}, _key=(-1, 0), _pid=379537) at remote 0x4be7bc778d0>, args=(), kwds=0x0)
        at Objects/typeobject.c:6819
    #11 0x00005555555c5a6d in _PyObject_MakeTpCall (tstate=0x5555559b2570, 
        callable=<Finalize(_weakref=<weakref at remote 0x4be7bcb7e50>, _callback=<method at remote 0x4be7bcb7db0>, _args=(), _kwargs={}, _key=(-1, 0), _pid=379537) at remote 0x4be7bc778d0>, args=<optimized out>, 
        nargs=0, keywords=0x0) at Objects/call.c:191
    #12 0x00005555556a4beb in _PyObject_VectorcallTstate (kwnames=0x0, nargsf=<optimized out>, args=0x7fffffffd5b8, 
        callable=<Finalize(_weakref=<weakref at remote 0x4be7bcb7e50>, _callback=<method at remote 0x4be7bcb7db0>, _args=(), _kwargs={}, _key=(-1, 0), _pid=379537) at remote 0x4be7bc778d0>, tstate=0x5555559b2570)
        at ./Include/cpython/abstract.h:116
    #13 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=<optimized out>, args=0x7fffffffd5b8, 
        callable=<Finalize(_weakref=<weakref at remote 0x4be7bcb7e50>, _callback=<method at remote 0x4be7bcb7db0>, _args=(), _kwargs={}, _key=(-1, 0), _pid=379537) at remote 0x4be7bc778d0>, tstate=0x5555559b2570)
        at ./Include/cpython/abstract.h:103
    #14 vm_call_function (ts=0x5555559b2570, acc=...) at Python/ceval_meta.c:1341
    #15 0x00005555558111ab in _PyEval_Fast (ts=0x5555559b2570, initial_acc=Register(as_int64 = 0), initial_pc=0x4be7d7a69a1 "F\f") at Python/ceval.c:982
    #16 0x00005555556a8d1f in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x5555559b2570) at Python/ceval_meta.c:2831
    #17 _PyFunction_Vectorcall (func=<function at remote 0x4be7d7e4f70>, stack=0x5555559542f0 <_Py_EmptyTupleStruct+48>, nargsf=<optimized out>, kwnames=<optimized out>) at Python/ceval_meta.c:3228
    #18 0x000055555576a272 in atexit_callfuncs (module=<optimized out>) at ./Modules/atexitmodule.c:93
    #19 0x000055555576a46d in atexit_run_exitfuncs (self=<optimized out>, unused=<optimized out>) at ./Modules/atexitmodule.c:192
    #20 0x0000555555810c89 in _PyEval_Fast (ts=0x5555559b2570, initial_acc=Register(as_int64 = 0), initial_pc=0x5555558d9c71 <cfunc_header_noargs> "\n") at Python/ceval.c:769
    #21 0x00005555556a7a11 in _PyEval_Eval (pc=<optimized out>, acc=..., tstate=0x5555559b2570) at Python/ceval_meta.c:2831
    [...]
    

    Not sure if this is a bug in viztracer or in nogil CPython.

    opened by ogrisel 6
  • Unable to use multiple HDF files in separate threads (Pandas + Tables)

    Unable to use multiple HDF files in separate threads (Pandas + Tables)

    Hi, I have stepped into the problem while trying to use multiple pandas.HDFStore() objects in the same interpreter but in separate nogil threads. The use case is pretty simple: each thread operates on its own file. The minimum reproduction example is as follows:

    from threading import Thread
    from multiprocessing import Process
    import pandas as pd
    import time
    import numpy as np
    
    def f1(n: str, t: float):
        fObj = pd.HDFStore(n)
        fObj.append("a",
                    pd.DataFrame({"id" : 1, "time": np.zeros(int(10 * t))}),
                    data_columns=["id"])
        time.sleep(t)
    
        fObj.close()
    
    def main():
        t1 = Thread(target=f1, args=("f1.hdf", 1.0))
        t2 = Thread(target=f1, args=("f2.hdf", 2.0))
        
        # t1 = Process(target=f1, args=("f1.hdf", 1.0))
        # t2 = Process(target=f1, args=("f2.hdf", 2.0))
    
        t1.start()
        t2.start()
    
        t1.join()
        t2.join()
    
    if __name__ == "__main__":
        main()
    

    I tested that on Windows and Ubuntu 22.04. On Linux it always segfaults while on Windows the script may fail silently or end up with whole range of different exceptions/outcomes:

    childCID = self._g_get_lchild_attr(childname, 'CLASS')
      File "tables\hdf5extension.pyx", line 1072, in tables.hdf5extension.Group._g_get_lchild_attr
    tables.exceptions.HDF5ExtError: HDF5 error back trace
    
      File "..\..\src\H5D.c", line 369, in H5Dopen2
        can't open dataset
      File "..\..\src\H5Dint.c", line 1156, in H5D_open
        not found
      File "..\..\src\H5Dint.c", line 1264, in H5D__open_oid
        can't get layout/pline/efl info
      File "..\..\src\H5Dlayout.c", line 436, in H5D__layout_oh_read
        can't initialize chunk cache
      File "..\..\src\H5Dchunk.c", line 608, in H5D__chunk_init
        can't find object for fapl ID
    
    End of HDF5 error back trace
    

    or

      File "C:\Users\Administrator\AppData\Local\Programs\Python\Python39\lib\site-packages\tables-3.6.1-py3.9-win-amd64.egg\tables\attributeset.py", line 248, in __init__
        self.__getattr__(attr)
      File "C:\Users\Administrator\AppData\Local\Programs\Python\Python39\lib\site-packages\tables-3.6.1-py3.9-win-amd64.egg\tables\attributeset.py", line 308, in __getattr__
        value = self._g_getattr(self._v_node, name)
      File "tables\hdf5extension.pyx", line 756, in tables.hdf5extension.AttributeSet._g_getattr
    tables.exceptions.HDF5ExtError: Can't get type info on attribute PYTABLES_FORMAT_VERSION in node /.
    

    Or one of the files might end up filled with data or even both of them are empty.

    It looks to me like a C API issue of HDF package.

    As cross-check I tested the script above in different interpreter & threading/MP configurations:

    • (nogil) python3.9 + threading -> fails
    • (nogil) python3.9 + MP -> passes
    • python3.10 + threading -> passes
    • python3.10 + MP -> passes

    On Ubuntu I tested this with such a set of packages:

    autopep8          2.0.0
    bitarray          2.6.0
    crccheck          1.3.0
    dataclasses-json  0.5.7
    marshmallow       3.19.0
    marshmallow-enum  1.5.1
    mypy-extensions   0.4.3
    numexpr           2.8.4
    numpy             1.22.3
    packaging         21.3
    pandas            1.3.3
    pip               21.3.1
    psutil            5.9.4
    pycodestyle       2.10.0
    pyparsing         3.0.9
    python-dateutil   2.8.2
    python-vxi11      0.9
    pytz              2022.6
    PyVISA            1.12.0
    PyYAML            6.0
    setuptools        58.1.0
    six               1.16.0
    tables            3.7.0
    tomli             2.0.1
    typing_extensions 4.4.0
    typing-inspect    0.8.0
    

    While on Windows:

    bitarray          2.6.0
    cffi              1.14.6
    crccheck          1.3.0
    Cython            0.29.29
    dataclasses-json  0.5.7
    Jinja2            3.1.2
    MarkupSafe        2.1.1
    marshmallow       3.18.0
    marshmallow-enum  1.5.1
    mock              4.0.3
    mypy-extensions   0.4.3
    numexpr           2.8.0
    numpy             1.19.4
    packaging         21.3
    pandas            1.3.1+1.gafcbd716a9
    pdoc              12.2.0
    pip               21.3.1
    psutil            5.9.3
    py-cpuinfo        9.0.0
    pybind11          2.6.2
    pycparser         2.21
    Pygments          2.13.0
    pyparsing         3.0.9
    python-dateutil   2.8.2
    python-vxi11      0.9
    pytz              2022.5
    PyVISA            1.12.0
    PyYAML            5.3.1
    pyzmq             24.0.1
    setuptools        58.1.0
    six               1.16.0
    sniffio           1.3.0
    tables            3.6.1 AND ALSO 3.5.2 (3.7.0 -> yet unsolved runtime error on package import)
    typing_extensions 4.4.0
    typing-inspect    0.8.0
    wheel             0.37.1
    

    It would be awesome if you (@colesbury) could look into that.

    opened by pjurgielewicz 5
  • nogil does not optimize mac pro M1 chip(arm64)

    nogil does not optimize mac pro M1 chip(arm64)

    When I try to use nogil with your fab.py on my mac pro M1,I found nogil could not make use m1 8 cores. And it seems like it dose not support arm chip as good as x86. when I use 1 thread run fab.py with nogil, it use 8 seconds, but I use 1 thread run fab.py with CPython, it just use 1 seconds. I also run this fab.py script on my intel x86 server, its performance is so surprised as your tips.

    opened by Roxas 1
  • nogil runtime error

    nogil runtime error

    printf Py_GetPythonHome : /usr/local/nogil-py/

    printf Py_GetPythonPath : /usr/local/nogil-py/lib/python39.zip:/usr/local/nogil-py/lib:/usr/local/nogil-py/lib/python3.9/site-packages:/usr/local/nogil-py/lib/python3.9:/usr/local/nogil-py/lib/python3.9/lib-dynload:/usr/local/nogil-py/lib/python39.zip:/usr/local/nogil-py/lib/python3.9:/usr/local/nogil-py/lib/python3.9/lib-dynload

    Traceback (most recent call last): File "", line 1, in File "/usr/local/nogil-py/lib/python3.9/site-packages/MNN/init.py", line 4, in from _mnncengine import * ImportError: /usr/local/nogil-py/lib/python3.9/site-packages/_mnncengine.nogil-39b-x86_64-linux-gnu.so: undefined symbol: _Py_TrueStruct

    opened by houshijie-2020 3
Releases(v3.9.10-nogil-2022-12-21)
Owner
Sam Gross
Sam Gross
Trio – a friendly Python library for async concurrency and I/O

Trio – a friendly Python library for async concurrency and I/O The Trio project aims to produce a production-quality, permissively licensed, async/awa

5k Jan 07, 2023
SCOOP (Scalable COncurrent Operations in Python)

SCOOP (Scalable COncurrent Operations in Python) is a distributed task module allowing concurrent parallel programming on various environments, from h

Yannick Hold 573 Dec 27, 2022
A Python package for easy multiprocessing, but faster than multiprocessing

MPIRE, short for MultiProcessing Is Really Easy, is a Python package for multiprocessing, but faster and more user-friendly than the default multiprocessing package.

753 Dec 29, 2022
rosny is a lightweight library for building concurrent systems.

rosny is a lightweight library for building concurrent systems. Installation Tested on: Linux Python = 3.6 From pip: pip install rosny From source: p

Ruslan Baikulov 6 Oct 05, 2021
Python Multithreading without GIL

Multithreaded Python without the GIL

Sam Gross 2.3k Jan 05, 2023
Ultra fast asyncio event loop.

uvloop is a fast, drop-in replacement of the built-in asyncio event loop. uvloop is implemented in Cython and uses libuv under the hood. The project d

magicstack 9.1k Jan 07, 2023
Simple package to enhance Python's concurrent.futures for memory efficiency

future-map is a Python library to use together with the official concurrent.futures module.

Arai Hiroki 2 Nov 15, 2022
aiomisc - miscellaneous utils for asyncio

aiomisc - miscellaneous utils for asyncio Miscellaneous utils for asyncio. The complete documentation is available in the following languages: English

aiokitchen 295 Jan 08, 2023
A curated list of awesome Python asyncio frameworks, libraries, software and resources

Awesome asyncio A carefully curated list of awesome Python asyncio frameworks, libraries, software and resources. The Python asyncio module introduced

Timo Furrer 3.8k Jan 08, 2023
Backport of the concurrent.futures package to Python 2.6 and 2.7

This is a backport of the concurrent.futures standard library module to Python 2. It does not work on Python 3 due to Python 2 syntax being used in th

Alex Grönholm 224 Nov 07, 2022
Jug: A Task-Based Parallelization Framework

Jug: A Task-Based Parallelization Framework Jug allows you to write code that is broken up into tasks and run different tasks on different processors.

Luis Pedro Coelho 387 Dec 21, 2022
AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio.

AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio. It implements trio-like structured concurrenc

Alex Grönholm 1.1k Jan 06, 2023
Raise asynchronous exceptions in other thread, control the timeout of blocks or callables with a context manager or a decorator

stopit Raise asynchronous exceptions in other threads, control the timeout of blocks or callables with two context managers and two decorators. Attent

Gilles Lenfant 97 Oct 12, 2022
A concurrent sync tool which works with multiple sources and targets.

Concurrent Sync A concurrent sync tool which works similar to rsync. It supports syncing given sources with multiple targets concurrently. Requirement

Halit Şimşek 2 Jan 11, 2022
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment

Parallelformers: An Efficient Model Parallelization Toolkit for Deployment

TUNiB 559 Dec 28, 2022
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs.

A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs, supporting both control flow and dataflow execution paradigms as well as de-centrali

102 Jan 06, 2023
🌀 Pykka makes it easier to build concurrent applications.

🌀 Pykka Pykka makes it easier to build concurrent applications. Pykka is a Python implementation of the actor model. The actor model introduces some

Stein Magnus Jodal 1.1k Dec 30, 2022
Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes.

unsync Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes. Quick Overview Functions marked with the @

Alex Sherman 802 Dec 28, 2022
Thread-safe asyncio-aware queue for Python

Mixed sync-async queue, supposed to be used for communicating between classic synchronous (threaded) code and asynchronous

aio-libs 665 Jan 03, 2023