PG-19 Language Modelling Benchmark

Related tags

Text Data & NLPpg19
Overview

PG-19 Language Modelling Benchmark

This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Project Gutenberg books library [1], that were published before 1919. It also contains metadata of book titles and publication dates.

Full dataset download link

PG-19 is over double the size of the Billion Word benchmark [2] and contains documents that are 20X longer, on average, than the WikiText long-range language modelling benchmark [3].

Books are partitioned into a train, validation, and test set. Book metadata is stored in metadata.csv which contains (book_id, short_book_title, publication_date).

Unlike prior benchmarks, we do not constrain the vocabulary size --- i.e. mapping rare words to an UNK token --- but instead release the data as an open-vocabulary benchmark. The only processing of the text that has been applied is the removal of boilerplate license text, and the mapping of offensive discriminatory words as specified by Ofcom [4] to placeholder tokens. Users are free to model the data at the character-level, subword-level, or via any mechanism that can model an arbitrary string of text.

To compare models we propose to continue measuring the word-level perplexity, by calculating the total likelihood of the dataset (via any chosen subword vocabulary or character-based scheme) divided by the number of tokens --- specified below in the dataset statistics table.

One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA [5] or NarrativeQA [6]. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing.

Dataset Statistics

Train Validation Test
Books 28,602 50 100
Num. Tokens 1,973,136,207 3,007,061 6,966,499

Bibtex

@article{raecompressive2019,
author = {Rae, Jack W and Potapenko, Anna and Jayakumar, Siddhant M and
          Hillier, Chloe and Lillicrap, Timothy P},
title = {Compressive Transformers for Long-Range Sequence Modelling},
journal = {arXiv preprint},
url = {https://arxiv.org/abs/1911.05507},
year = {2019},
}

Dataset Metadata

The following table is necessary for this dataset to be indexed by search engines such as Google Dataset Search.

property value
name The PG-19 Language Modeling Benchmark
alternateName PG-19
url
sameAs https://github.com/deepmind/pg19
description This repository contains the PG-19 dataset. It includes a set of books extracted from the Project Gutenberg books project (https://www.gutenberg.org), that were published before 1919. It also contains metadata of book titles and publication dates.
provider
property value
name DeepMind
sameAs https://en.wikipedia.org/wiki/DeepMind
license
property value
name Apache License, Version 2.0
url
citation https://identifiers.org/arxiv:1911.05507

Contact

If you have any questions, please contact Jack Rae.

References

  • [1] https://www.gutenberg.org
  • [2] Chelba et al. "One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling" (2013)
  • [3] Merity et al. "Pointer Sentinel Mixture Models" (2016)
  • [4] Ofcom offensive language guide
  • [5] Paperno et al. "The LAMBADA dataset: Word prediction requiring a broad discourse context" (2016)
  • [6] Kočiský et al. "The narrativeqa reading comprehension challenge" (2018)
Owner
DeepMind
DeepMind
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
1 Jun 28, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023