GrailQA: Strongly Generalizable Question Answering

Related tags

Deep LearningGrailQA
Overview

GrailQA: Strongly Generalizable Question Answering

Contributions Welcome License language-python3 made-with-Pytorch paper image

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.

This is the accompanying code for the paper "Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases" published at TheWebConf (previously WWW) 2021. For dataset and leaderboard, please refer to the homepage of GrailQA. In this repository, we provide the code for the baseline models for reproducibility and demonstrate how to work with this dataset.

Package Description

This repository is structured as follows:

GrailQA/
├─ model_configs/
    ├─ train/: Configuration files for training
    ├─ test/: Configuration files for inference
├─ data/: Data files for training, validation, and test
├─ ontology/: Processed Freebase ontology files
    ├─ domain_dict: Mapping from a domain in Freebase Commons to all schema items in it
    ├─ domain_info: Mapping from a schema item to a Freebase Commons domain it belongs to
    ├─ fb_roles: Domain and range information for a relation (Note that here domain means a different thing from domains in Freebase Commons)
    ├─ fb_types: Class hierarchy in Freebase
    ├─ reverse_properties: Reverse properties in Freebase 
├─ bert_configs/: BERT configuration used by pytorch_transformer, which you are very unlikely to modify
├─ entity_linking_results/: Entity linking results 
├─ entity_linker/: source code for the entity linker, which is a separate module from our main model
├─ vocabulary/: Preprocessed vocabulary, which is only required by our GloVe-based models
├─ cache/: Cached results for SPARQL queries, which are used to accelerate the experiments by caching many SPARQL query results offline
├─ saved_models/: Trained models
├─ utils/:
    ├─ bert_interface.py: Interface to BERT 
    ├─ logic_form_util: Tools related to logical forms, including the exact match checker for two logical forms
    ├─ search_over_graphs.py: Generate candidate logical forms for our Ranking models
    ├─ sparql_executor: Sparql-related tools
├─ bert_constrained_seq2seq.py: BERT-based model for both Ranking and Transduction
├─ bert_seq2seq_reader.py: Data reader for BERT-based models
├─ constrained_seq2seq.py: GloVe-based model for both Ranking and Transduction
├─ constrained_seq2seq_reader.py: Data reader for GloVe-based models
├─ run.py: Main function

Setup

Follow these steps if you want to reproduce the results in the paper.

  1. Follow Freebase Setup to set up a Virtuoso triplestore service. After starting your virtuoso service, replace the url in utils/sparql_executer.py with your own.
  2. Download cache files from https://1drv.ms/u/s!AuJiG47gLqTznjfRRxdW5YDYFt3o?e=GawH1f and put all the files under cache/.
  3. Download trained models from https://1drv.ms/u/s!AuJiG47gLqTznxbenfeRBrTuTbWz?e=g5Nazi and put all the files under saved_models/.
  4. Download GrailQA dataset and put it under data/.
  5. Install all required libraries:
$ pip install -r requirements.txt

(Note: we have included our adapted version of AllenNLP in this repo so there's no need to separately install that.)

Reproduce Our Results

The predictions of our baseline models can be found via CodaLab. Run predict command to reproduce the predictions. There are several arguments to configure to run predict:

python run.py predict
  [path_to_saved_model]
  [path_to_test_data]
  -c [path_to_the_config_file]
  --output-file [results_file_name] 
  --cuda-device [cuda_device_to_use]

Specifically, to run Ranking+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_ranking.jsonnet --output-file bert_ranking.txt --cuda-device 0

To run Ranking+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_ranking.jsonnet --output-file glove_ranking.txt --cuda-device 0

To run Transduction+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_vp.jsonnet --output-file bert_vp.txt --cuda-device 0

To run Transduction+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_vp.jsonnet --output-file glove_vp.txt --cuda-device 0

Entity Linking

We also release our code for entity linking to facilitate future research. Similar to most other KBQA methods, entity linking is a separate module from our main model. If you just want to run our main models, you do not need to re-run our entity linking module because our models directly use the entity linking results under entity_linking/.

Our entity linker is based on BERT-NER and the popularity-based entity disambiguation in aqqu. Specifically, we use the NER model to identify a set of entity mentions, and then use the identified mentions to retieve Freebase entities from the entity memory constructed from Freebase entity mentions information (i.e., mentions in FACC1 and all alias in Freebase if not included in FACC11).

To run our entity linker, first download the mentions data from https://1drv.ms/u/s!AuJiG47gLqTznjl7VbnOESK6qPW2?e=HDy2Ye and put all data under entity_linker/data/. Second, download our trained NER model from https://1drv.ms/u/s!AuJiG47gLqTznjge7wLqAZiSMIcU?e=5RpKaC, which is trained using the training data of GrailQA, and put it under entity_linker/BERT_NER/. Then you should be all set! We provide a use example in entity_linker/bert_entity_linker.py. Follow the use example to identiy entities using our entity linker for your own data.

[1]: FACC1 containes the mentions information for around 1/8 of Freebase entities, including different mentions for those entities and the frequency for each mention. For entities not included in FACC1, we use the following properties to retrieve the mentions for each entity: , , . Note that we don't have frequency information for those entity mentions, so we simply treat the number of occurences as 1 for all of them in our implementation.

Train New Models

You can also use our code to train new models.

Training Configuration

Following AllenNLP, our train command also takes a configuration file as input to specify all model hyperparameters and training related parameters such as learning rate, batch size, cuda device, etc. Most parameters in the training configuration files (i.e., files under model_configs/train/) are hopefully intutive based on their names, so we will only explain those parameters that might be confusing here.

- ranking: Ranking model or generation mode. True for Ranking, and false for Transduction.
- offline: Whether to use cached files under cache/.
- num_constants_per_group: Number of schema items in each chunk for BERT encoding.
- gq1: True for GraphQuestions, and false for GrailQA.
- use_sparql: Whether to use SPARQL as the target query. Set to be false, because in this paper we are using S-expressions.
- use_constrained_vocab: Whether to do vocabulary pruning or not.
- constrained_vocab: If we do vocabulary pruning, how to do it? Options include 1_step, 2_step and mix2.
- perfect_entity_linking: Whether to assume gold entities are given.

Training Command

To train the BERT-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_bert.jsonnet --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface -s [your_path_specified_for_training]

To train the GloVe-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_glove.jsonnet --include-package constrained_seq2seq --include-package constrained_seq2seq_reader -s [your_path_specified_for_training]

Online Running Time

We also show the running time of inference in online mode, in which offline caches are disabled. The aim of this setting is to mimic the real scenario in production. To report the average running time, we randomly sample 1,000 test questions for each model and run every model on a single GeoForce RTX 2080-ti GPU card with batch size 1. A comparison of different models is shown below:

Transduction Transduction-BERT Transduction-VP Transduction-BERT-VP Ranking Ranking-BERT
Running time (seconds) 60.899 50.176 4.787 1.932 115.459 80.892

The running time is quite significant when either ranking mode or vocabulary pruning is activated. This is because running SPARQL queries to query the 2-hop information (i.e., either candidate logical forms for ranking or 2-hop schema items for vocabulary pruning) is very time-consuming. This is also a general issue for the enumeration+ranking framework in KBQA, which is used by many existing methods. This issue has to some extend been underaddressed so far. A common practice is to use offline cache to store the exectuions of all related SPARQL queries, which assumes the test questions are known in advance. This assumption is true for existing KBQA benchmarks but is not realistic for a real production system. How to improve the efficiency of KBQA models while maintaining their efficacy is still an active area for research.

Citation

@inproceedings{gu2021beyond,
  title={Beyond IID: three levels of generalization for question answering on knowledge bases},
  author={Gu, Yu and Kase, Sue and Vanni, Michelle and Sadler, Brian and Liang, Percy and Yan, Xifeng and Su, Yu},
  booktitle={The World Wide Web Conference},
  year={2021},
  organization={ACM}
}
Owner
OSU DKI Lab
The Data, Knowledge, and Intelligence Lab at Ohio State University
OSU DKI Lab
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022