Weight estimation in CT by multi atlas techniques

Related tags

Deep Learningmaweight
Overview

maweight

A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model selection for regression.

About

A detailed description of the implemented methodology can be found in the paper:

The package is used intensively in the case study of estimating weights of meat cuts from the CT images of rabbit in the repository: https://github.com/gykovacs/rabbit_ct_weights

If you use the package, please consider citing the paper:

@article{Csoka2021,
    author={\'Ad\'am Cs\'oka and Gy\"orgy Kov\'acs and Vir\'ag \'Acs and Zsolt Matics and Zsolt Gerencs\'er and Zsolt Szendr\"o and \"Ors Petneh\'azy and Imre Repa and Mariann Moizs and Tam\'as Donk\'o},
    title={Multi-atlas segmentation based estimation of weights from CT scans in farm animal imaging and its applications to rabbit breeding programs},
    year={2021}
}

Installation (Windows/Linux/Mac)

Prerequisites: elastix

Make sure the elastix package (https://elastix.lumc.nl/) is installed and available in the command line by issuing

> elastix

If elastix is properly installed, the following textual output should appear in the terminal:

Use "elastix --help" for information about elastix-usage.

Installing the `maweight` package

Clone the GitHub repository:

> git clone [email protected]:gykovacs/maweight.git

Navigate into the root directory of the repository:

> cd maweight

Install the code into the active Python environment

> pip install .

Usage examples

Segmentation by elastic registration

The main functionality of the package is registering image A to image B by elastic registration and then transforming a set of images C, D, ... to image B by the same transformation field. This functionality is implemented in the `register_and_transform` function:

from maweight import register_and_transform

A # path, ndarray or Nifti1Image - the atlas image
B # path, ndarray or Nifti1Image - the unseen image
[C, D] # paths, ndarrays or Nifti1Image objects - the atlas annotations for A, to be transformed to B
[C_transformed_path, D_transformed_path] # paths of the output images

register_and_transform(A, B, [C, D], [C_transformed_path, D_transformed_path])

Feature extraction

Given an image B and a set of atlases registered to it [C, D, ...], with corresponding labels [Clabel, Dlabel, ...] (for the labeling of features), feature extraction with bin boundaries [b0, b1, ...] can be executed in terms of the `extract_features_3d` function:

from maweight import extract_features_3d

B # path, ndarray or Nifti1Image - a base image to extract features from
registered_atlases # list of paths, ndarrays or Nivti1Image objects
labels # list of labels of the atlases (used to label the features)
bins= [0, 20, 40, 60, 80, 100] # bin boundaries for histogram feature extraction

features= extract_features_3d(B, registered_atlases, labels, bins)

Model selection

Given a dataset of features extracted from the ensemble of segmentations, one can carry out regression model fitting by the `model_selection` function:

from maweight import model_selection

features # pandas DataFrame of features
targets # pandas Series of corresponding weights

results= model_selection(features, targets)

By default, the model selection runs simulated annealing based feature ssubset and regressor parameter selection for kNN, linear, lasso, ridge and PLS regression and returns the summary of results in a pandas DataFrame.

Owner
György Kovács
György Kovács
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022