Weight estimation in CT by multi atlas techniques

Related tags

Deep Learningmaweight
Overview

maweight

A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model selection for regression.

About

A detailed description of the implemented methodology can be found in the paper:

The package is used intensively in the case study of estimating weights of meat cuts from the CT images of rabbit in the repository: https://github.com/gykovacs/rabbit_ct_weights

If you use the package, please consider citing the paper:

@article{Csoka2021,
    author={\'Ad\'am Cs\'oka and Gy\"orgy Kov\'acs and Vir\'ag \'Acs and Zsolt Matics and Zsolt Gerencs\'er and Zsolt Szendr\"o and \"Ors Petneh\'azy and Imre Repa and Mariann Moizs and Tam\'as Donk\'o},
    title={Multi-atlas segmentation based estimation of weights from CT scans in farm animal imaging and its applications to rabbit breeding programs},
    year={2021}
}

Installation (Windows/Linux/Mac)

Prerequisites: elastix

Make sure the elastix package (https://elastix.lumc.nl/) is installed and available in the command line by issuing

> elastix

If elastix is properly installed, the following textual output should appear in the terminal:

Use "elastix --help" for information about elastix-usage.

Installing the `maweight` package

Clone the GitHub repository:

> git clone [email protected]:gykovacs/maweight.git

Navigate into the root directory of the repository:

> cd maweight

Install the code into the active Python environment

> pip install .

Usage examples

Segmentation by elastic registration

The main functionality of the package is registering image A to image B by elastic registration and then transforming a set of images C, D, ... to image B by the same transformation field. This functionality is implemented in the `register_and_transform` function:

from maweight import register_and_transform

A # path, ndarray or Nifti1Image - the atlas image
B # path, ndarray or Nifti1Image - the unseen image
[C, D] # paths, ndarrays or Nifti1Image objects - the atlas annotations for A, to be transformed to B
[C_transformed_path, D_transformed_path] # paths of the output images

register_and_transform(A, B, [C, D], [C_transformed_path, D_transformed_path])

Feature extraction

Given an image B and a set of atlases registered to it [C, D, ...], with corresponding labels [Clabel, Dlabel, ...] (for the labeling of features), feature extraction with bin boundaries [b0, b1, ...] can be executed in terms of the `extract_features_3d` function:

from maweight import extract_features_3d

B # path, ndarray or Nifti1Image - a base image to extract features from
registered_atlases # list of paths, ndarrays or Nivti1Image objects
labels # list of labels of the atlases (used to label the features)
bins= [0, 20, 40, 60, 80, 100] # bin boundaries for histogram feature extraction

features= extract_features_3d(B, registered_atlases, labels, bins)

Model selection

Given a dataset of features extracted from the ensemble of segmentations, one can carry out regression model fitting by the `model_selection` function:

from maweight import model_selection

features # pandas DataFrame of features
targets # pandas Series of corresponding weights

results= model_selection(features, targets)

By default, the model selection runs simulated annealing based feature ssubset and regressor parameter selection for kNN, linear, lasso, ridge and PLS regression and returns the summary of results in a pandas DataFrame.

Owner
György Kovács
György Kovács
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021