Binary classification for arrythmia detection with ECG datasets.

Overview

HEART DISEASE AI DATATHON 2021

[Eng] / [Kor]


#English

This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electrocardiogram datasets for artificial intelligence learning promoted as part of the "2021 AI Learning Data Construction Project" to discriminate echocardiography/electrocardiogram diseases.

Task II. Arrythmia on ECG datasets

0. Model

Resnet-based architecture.
Best AUC-ROC Score: 0.9986926250732517

1. Installation

1.1. Environment

Python >= 3.6

1.2. Requirements:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. Usage

2.1. Training

  1. Basic usage
python train.py -d electrocardiogram/data/train -s model.h5
  1. Training with 8 leads inputs, elevation adjustment, data augmentation and gqussian noises
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : File path of training data
    • -s, --save : File name for saving trained model (extension should be '.h5')
    • -b, --batch : Batch size (default=500)
    • -e, --epoch : Number of epochs (default=50)
    • -l, --lead : Number of leads to be trained (2/8/12) (default=2)
    • -v, --elevation : Option for adjusting elevation
    • -a, --augmentation : Option for data augmentation (stretching & amplifying)
    • -n, --noise : Option for adding noise on data

2.2. Evaluation

  1. Basic usage
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. Evaluation with the best model
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. Evaluation with 12 leads inputs and elevation adjustment
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : File path of validation data
    • -m, --model : File name of saved model
    • -l, --lead : Number of leads being trained (default=2) (2/8/12)
    • -v, --elevation : Option for adjusting elevation

#Korean

심초음파/심전도 ai 모델 데이터톤 2021

이 경진대회는 "2021 인공지능 학습용 데이터 구축사업"의 일환으로 추진된 인공지능 학습용 심장질환 심초음파 및 심전도 데이터셋을 이용하여 심초음파/심전도 질환을 판별하는 AI 진단 모델링 경진대회입니다.

Task II. Arrythmia on ECG datasets

심전도 데이터셋을 활용한 부정맥 진단 AI 모델 공모(심전도 데이터셋을 활용한 부정맥 진단 AI 모델 개발)

0. 모델

Resnet 구조 기반의 Binary classification model.
Best AUC-ROC Score: 0.9986926250732517

1. 설치

1.1. 환경

Python >= 3.6

1.2. 필요한 패키지:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. 사용법

2.1. Training

  1. 기본 사용법 예시 (제출용)
python train.py -d electrocardiogram/data/train -s model.h5
  1. 8개 리드, 상하조정, 데이터 어그멘테이션, 노이즈 적용
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : 트레이닝 데이터 경로
    • -s, --save : 학습된 모델명 (확장자 .h5로 써줄 것)
    • -b, --batch : 배치 사이즈 (default=500)
    • -e, --epoch : 에포크 수 (default=50)
    • -l, --lead : 트레이닝에 쓸 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
    • -a, --augmentation : 데이터 어그멘테이션 옵션 (stretching & amplifying)
    • -n, --noise : 가우시안 노이즈 적용 옵션

2.2. Evaluation

  1. 기본 사용법 예시
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. 체출된 Best model 평가 (제출용)
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. 12개 리드, 상하조정 적용
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : 벨리데이션 데이터 경로
    • -m, --model : 불러올 모델 파일명
    • -l, --lead : 트레이닝된 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
Owner
HY_Kim
CSer in SUNY Korea.
HY_Kim
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022