Wenet STT Python

Overview

Wenet STT Python

Beta Software

Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for speech recognition.

Donate Donate Donate

Requirements:

  • Python 3.7+ x64
  • Platform: Windows/Linux/MacOS
  • Python package requirements: cffi, numpy
  • Wenet Model (must be "runtime" format)
    • Several are available ready-to-go on this project's releases page and below.

Features:

  • Synchronous decoding of single utterance
  • Streaming decoding, using separate thread

Models:

Model Download Size
gigaspeech_20210728_u2pp_conformer 549 MB
gigaspeech_20210811_conformer_bidecoder 540 MB

Usage

from wenet_stt import WenetSTTModel
model = WenetSTTModel(WenetSTTModel.build_config('model_dir'))

import wave
with wave.open('tests/test.wav', 'rb') as wav_file:
    wav_samples = wav_file.readframes(wav_file.getnframes())

assert model.decode(wav_samples).lower() == 'it depends on the context'

Also contains a simple CLI interface for recognizing wav files:

$ python -m wenet_stt decode model test.wav
IT DEPENDS ON THE CONTEXT
$ python -m wenet_stt decode model test.wav test.wav
IT DEPENDS ON THE CONTEXT
IT DEPENDS ON THE CONTEXT
$ python -m wenet_stt -h
usage: python -m wenet_stt [-h] {decode} ...

positional arguments:
  {decode}    sub-command
    decode    decode one or more WAV files

optional arguments:
  -h, --help  show this help message and exit

Installation/Building

Recommended installation via binary wheel from pip (requires a recent version of pip):

python -m pip install wenet_stt

For details on building from source, see the Github Actions build workflow.

Author

License

This project is licensed under the GNU Affero General Public License v3 (AGPL-3.0-or-later). See the LICENSE file for details. If this license is problematic for you, please contact me.

Acknowledgments

  • Contains and uses code from WeNet, licensed under the Apache-2.0 License, and other transitive dependencies (see source).
You might also like...
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Snapchat-filters-app-opencv-python - Here we used opencv and other inbuilt python modules to create filter application like snapchat Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • library dependency failures

    library dependency failures

    when running decode, i get a library linking issue python -m wenet_stt decode model test.wav

      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/__main__.py", line 46, in <module>
        main()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/__main__.py", line 24, in main
        wenet_stt = WenetSTTModel(WenetSTTModel.build_config(args.model_dir))
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 71, in __init__
        super().__init__()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 35, in __init__
        self.init_ffi()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 39, in init_ffi
        cls._lib = _ffi.init_once(cls._init_ffi, cls.__name__ + '._init_ffi')
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 749, in init_once
        result = func()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 48, in _init_ffi
        return _ffi.dlopen(_library_binary_path)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 150, in dlopen
        lib, function_cache = _make_ffi_library(self, name, flags)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 832, in _make_ffi_library
        backendlib = _load_backend_lib(backend, libname, flags)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 827, in _load_backend_lib
        raise OSError(msg)
    OSError: cannot load library '/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib': dlopen(/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib, 0x0002): Library not loaded: @rpath/libtorch.dylib
      Referenced from: /Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib
      Reason: tried: '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/openfst-subbuild/openfst-populate-prefix/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/libtorch-src/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/openfst-subbuild/openfst-populate-prefix/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/libtorch-src/lib/libtorch.dylib' (no such file), '/Users/myuser/opt/miniconda3/envs/wenet/lib/libtorch.dylib' (no such file), '/Users/myuser/opt/miniconda3/envs/wenet/bin/../lib/libtorch.dylib' (no such file), '/usr/local/lib/libtorch.dylib' (no such file), '/usr/lib/libtorch.dylib' (no such file).  Additionally, ctypes.util.find_library() did not manage to locate a library called '/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib'```
    opened by eschmidbauer 0
  • Issues with LM (TLG-rescoring)

    Issues with LM (TLG-rescoring)

    I'm trying to use CTC WFST-search for rescoring with compiled TLG graph using this tutorial: https://wenet-e2e.github.io/wenet/lm.html and passing these parameters to decoder: config = { "model_path": f"wenet/{model_name}/final.zip", "dict_path": f"wenet/{model_name}/words.txt", "rescoring_weight": 1.0, "blank_skip_thresh": 0.98, "beam": 15.0, "lattice_beam": 7.5, "min_active": 10, "max_active": 7000, "ctc_weight": 0.5, "reverse_weight": 0.0, "chunk_size": -1, "fst_path": f"wenet/examples/aishell/s0/data/lang_test/TLG.fst" }

    However I'm getting error: `ERROR: FstImpl::ReadHeader: FST not of type vector, found qq: wenet/examples/aishell/s0/data/lang_test/TLG.fst F1102 22:28:04.138978 26002 wenet_stt_lib.cpp:160] Check failed: fst != nullptr *** Check failure stack trace: *** @ 0x7f81d6cfb38d google::LogMessage::Fail() @ 0x7f81d6cfd604 google::LogMessage::SendToLog() @ 0x7f81d6cfaec0 google::LogMessage::Flush() @ 0x7f81d6cfdd89 google::LogMessageFatal::~LogMessageFatal() @ 0x7f81e83701b5 InitDecodeResourceFromSimpleJson() @ 0x7f81e8380ebc WenetSTTModel::WenetSTTModel() @ 0x7f81e83719bb wenet_stt__construct @ 0x7f82021b7dec ffi_call_unix64 @ 0x7f82021b6f55 ffi_call @ 0x7f82023d9e56 cdata_call @ 0x5da58b _PyObject_FastCallKeywords @ 0x54bc71 (unknown) @ 0x552d2d _PyEval_EvalFrameDefault @ 0x54cb89 _PyEval_EvalCodeWithName @ 0x5dac6e _PyFunction_FastCallDict @ 0x590713 (unknown) @ 0x5da1c9 _PyObject_FastCallKeywords @ 0x552fb7 _PyEval_EvalFrameDefault @ 0x54c522 _PyEval_EvalCodeWithName @ 0x54e933 PyEval_EvalCode @ 0x6305a2 (unknown) @ 0x630657 PyRun_FileExFlags @ 0x6312cf PyRun_SimpleFileExFlags @ 0x654232 (unknown) @ 0x65458e _Py_UnixMain @ 0x7f820422fb97 __libc_start_main @ 0x5e0cca _start @ (nil) (unknown) Aborted

    The same TLG-graph works fine when I'm using the default WeNet decoder. Ubuntu 18.04.

    opened by tonko22 0
Owner
David Zurow
david.zurow at gmail
David Zurow
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022