Pre-Trained Image Processing Transformer (IPT)

Overview

Pre-Trained Image Processing Transformer (IPT)

By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao. [arXiv]

We study the low-level computer vision task (such as denoising, super-resolution and deraining) and develop a new pre-trained model, namely, image processing transformer (IPT). We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs. The IPT model is trained on these images with multi-heads and multi-tails. The pre-trained model can therefore efficiently employed on desired task after fine-tuning. With only one pre-trained model, IPT outperforms the current state-of-the-art methods on various low-level benchmarks.

MindSpore Code

Requirements

  • python 3
  • pytorch == 1.4.0
  • torchvision

Dataset

The benchmark datasets can be downloaded as follows:

For super-resolution:

Set5, Set14, B100, Urban100.

For denoising:

CBSD68, Urban100.

For deraining:

Rain100L.

The result images are converted into YCbCr color space. The PSNR is evaluated on the Y channel only.

Script Description

This is the inference script of IPT, you can following steps to finish the test of image processing tasks, like SR, denoise and derain, via the corresponding pretrained models.

Script Parameter

For details about hyperparameters, see option.py.

Evaluation

Pretrained models

The pretrained models are available in google drive

Evaluation Process

Inference example: For SR x2,x3,x4:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test Set5+Set14+B100+Urban100 --scale $SCALE

For Denoise 30,50:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test CBSD68+Urban100 --scale 1 --denoise --sigma $NOISY_LEVEL

For derain:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --scale 1 --derain

Results

  • Detailed results on image super-resolution task.
Method Scale Set5 Set14 B100 Urban100
VDSR X2 37.53 33.05 31.90 30.77
EDSR X2 38.11 33.92 32.32 32.93
RCAN X2 38.27 34.12 32.41 33.34
RDN X2 38.24 34.01 32.34 32.89
OISR-RK3 X2 38.21 33.94 32.36 33.03
RNAN X2 38.17 33.87 32.32 32.73
SAN X2 38.31 34.07 32.42 33.1
HAN X2 38.27 34.16 32.41 33.35
IGNN X2 38.24 34.07 32.41 33.23
IPT (ours) X2 38.37 34.43 32.48 33.76
Method Scale Set5 Set14 B100 Urban100
VDSR X3 33.67 29.78 28.83 27.14
EDSR X3 34.65 30.52 29.25 28.80
RCAN X3 34.74 30.65 29.32 29.09
RDN X3 34.71 30.57 29.26 28.80
OISR-RK3 X3 34.72 30.57 29.29 28.95
RNAN X3 34.66 30.52 29.26 28.75
SAN X3 34.75 30.59 29.33 28.93
HAN X3 34.75 30.67 29.32 29.10
IGNN X3 34.72 30.66 29.31 29.03
IPT (ours) X3 34.81 30.85 29.38 29.49
Method Scale Set5 Set14 B100 Urban100
VDSR X4 31.35 28.02 27.29 25.18
EDSR X4 32.46 28.80 27.71 26.64
RCAN X4 32.63 28.87 27.77 26.82
SAN X4 32.64 28.92 27.78 26.79
RDN X4 32.47 28.81 27.72 26.61
OISR-RK3 X4 32.53 28.86 27.75 26.79
RNAN X4 32.49 28.83 27.72 26.61
HAN X4 32.64 28.90 27.80 26.85
IGNN X4 32.57 28.85 27.77 26.84
IPT (ours) X4 32.64 29.01 27.82 27.26
  • Super-resolution result

  • Denoising result

  • Derain result

Citation

@misc{chen2020pre,
      title={Pre-Trained Image Processing Transformer}, 
      author={Chen, Hanting and Wang, Yunhe and Guo, Tianyu and Xu, Chang and Deng, Yiping and Liu, Zhenhua and Ma, Siwei and Xu, Chunjing and Xu, Chao and Gao, Wen},
      year={2021},
      eprint={2012.00364},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022