Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Overview

Oriented RepPoints for Aerial Object Detection

图片

The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”.

Introduction

Based on the Oriented Reppoints detector with Swin Transformer backbone, the 3rd Place is achieved on the Task 1 and the 2nd Place is achieved on the Task 2 of 2021 challenge of Learning to Understand Aerial Images (LUAI) held on ICCV’2021. The detailed information is introduced in this paper of "LUAI Challenge 2021 on Learning to Understand Aerial Images, ICCVW2021".

New Feature

  • BackBone: add Swin-Transformer, ReResNet
  • DataAug: add Mosaic4or9, Mixup, HSV, RandomPerspective, RandomScaleCrop DataAug out

Installation

Please refer to install.md for installation and dataset preparation.

Getting Started

This repo is based on mmdetection. Please see GetStart.md for the basic usage.

Results and Models

The results on DOTA test-dev set are shown in the table below(password:aabb/swin/ABCD). More detailed results please see the paper.

Model Backbone MS DataAug DOTAv1 mAP DOTAv2 mAP Download
OrientedReppoints R-50 - - 75.68 - baidu(aabb)
OrientedReppoints R-101 - 76.21 - baidu(aabb)
OrientedReppoints R-101 78.12 - baidu(aabb)
OrientedReppoints SwinT-tiny - - - -

ImageNet-1K and ImageNet-22K Pretrained Models

name pretrain resolution [email protected] [email protected] #params FLOPs FPS 22K model 1K model Need to turn read version
Swin-T ImageNet-1K 224x224 81.2 95.5 28M 4.5G 755 - github/baidu(swin)/config
Swin-S ImageNet-1K 224x224 83.2 96.2 50M 8.7G 437 - github/baidu(swin)/config
Swin-B ImageNet-1K 224x224 83.5 96.5 88M 15.4G 278 - github/baidu(swin)/config
Swin-B ImageNet-1K 384x384 84.5 97.0 88M 47.1G 85 - github/baidu(swin)/test-config
Swin-B ImageNet-22K 224x224 85.2 97.5 88M 15.4G 278 github/baidu(swin) github/baidu(swin)/test-config
Swin-B ImageNet-22K 384x384 86.4 98.0 88M 47.1G 85 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 224x224 86.3 97.9 197M 34.5G 141 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 384x384 87.3 98.2 197M 103.9G 42 github/baidu(swin) github/baidu(swin)/test-config
ReResNet50 ImageNet-1K 224x224 71.20 90.28 - - - - google/baidu(ABCD)/log -

The mAOE results on DOTAv1 val set are shown in the table below(password:aabb).

Model Backbone mAOE Download
OrientedReppoints R-50 5.93° baidu(aabb)

Note:

  • Wtihout the ground-truth of test subset, the mAOE of orientation evaluation is calculated on the val subset(original train subset for training).
  • The orientation (angle) of an aerial object is define as below, the detail of mAOE, please see the paper. The code of mAOE is mAOE_evaluation.py. 微信截图_20210522135042

Visual results

The visual results of learning points and the oriented bounding boxes. The visualization code is show_learning_points_and_boxes.py.

  • Learning points

Learning Points

  • Oriented bounding box

Oriented Box

Citation

@article{Li2021oriented,
  title={Oriented RepPoints for Aerial Object Detection},
  author={Wentong Li and Jianke Zhu},
  journal={arXiv preprint arXiv:2105.11111},
  year={2021}
}

Acknowledgements

I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:

OrientedRepPoints

Swin-Transformer-Object-Detection

ReDet

Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022