LSSY量化交易系统

Related tags

Deep LearningLSSY
Overview

LSSY量化交易系统

该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开。购买课程的朋友可以找我获取实盘部分和去邀请码。

支持A股和可转债市场并且可以实盘全自动交易的量化交易系统。

开源的目的是希望能有更多的人来参与社区维护,共同打造最完美的量化交易系统。

目前市场上集量化回测、实盘交易的系统并不多,适用A股的更是寥寥无几,要么收费高昂,LSSY量化交易系统为了让研究量化交易的朋友人人都能用,所以在此开源,并且完全免费,希望更多的人来参与完善系统,贡献自己的一份力量,避免大家重复劳动。

LSSY量化交易系统致力于量化交易,不再主观交易,通过数据,做大概率,让量化交易变得更容易,大家都可以参与完善,为了更好的利于社区发展,目前采用邀请制,使用邀请码才能完整的使用LSSY量化交易系统,提交代码或者邀请朋友都可以免费获得邀请码(在社区讨论QQ群发放)。

使用LSSY量化交易系统编写海龟交易法则

https://edu.csdn.net/course/detail/31900

LSSY量化交易系统的全面详细分析视频教程

https://edu.csdn.net/course/detail/31906

安装

  • Windows

    1.安装Linux子系统,选择ubuntu子系统。

    2.给子系统安装pip3

    sudo apt install python3-pip
    

    3.安装数据库

    sudo apt install redis
    

    4.启动数据库,子系统不能自动启动,所以每次都需要手动启动数据库服务,所以不建议在Windows上运行。

    redis-server
    
  • Linux

    1.安装 redis 数据库

    sudo apt install redis
    

    2.需要 python3.8

    下载源码编译安装:https://www.python.org/ftp/python/3.8.7/Python-3.8.7.tar.xz

执行安装脚本

./install.sh

启动LSSY量化交易系统

进入实盘交易

./runWork.py

进入回测

./runWork.py b

访问前端

推荐分辨率>=2k

http://127.0.0.1:8000/

redis 快照报错

修改配置文件

/etc/redis/redis.conf

找到

################################ SNAPSHOTTING  ################################
...
...
stop-writes-on-bgsave-error yes

改为

stop-writes-on-bgsave-error no

初次启动注意事项

首次部署LSSY量化交易系统,会下载大量财务历史等数据,根据网络情况可能会很慢,建议晚上睡觉前启动系统,一般到第二天就全部下载完成了,仅首次运行,后续每天只需要更新k线即可,速度会快很多。

QQ群讨论社区:174647513

DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022