A library that can print Python objects in human readable format

Overview

objprint

build coverage pypi support-version license commit

A library that can print Python objects in human readable format

Install

pip install objprint

Usage

op

Use op() (or objprint()) to print objects.

from objprint import op

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

op(Player())
<Player 0x7fe44e1e3070
  .age = 18,
  .coins = {'bronze': 57, 'gold': 1, 'silver': 33},
  .items = ['axe', 'armor'],
  .name = 'Alice',
  .position = <Position
    .x = 3,
    .y = 5
  >
>

You can print multiple objects just like print, except op will print them in separate lines

op([1, 2], {'a': 1})
[1, 2]
{'a': 1}

add_objprint

If you want to use print() to print your object, you can also use the class decorator add_objprint to add __str__ method for your class.

from objprint import add_objprint

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

@add_objprint
class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

# This will print the same thing as above
print(Player())

objstr

If you want the str representation of the object, instead of printing it on the screen, you can use objstr function

from objprint import objstr

s = objstr(my_object)

objjson

objprint supports print objects to json to make it easier to serialze an object.

objjson returns a jsonifiable object that can be dumped with json.dumps

from objprint import objjson

json_obj = objjson(Player())

print(json.dumps(json_obj, indent=2))
{
  ".type": "Player",
  "name": "Alice",
  "age": 18,
  "items": [
    "axe",
    "armor"
  ],
  "coins": {
    "gold": 1,
    "silver": 33,
    "bronze": 57
  },
  "position": {
    ".type": "Position",
    "x": 3,
    "y": 5
  }
}

You can use op to print in json format directly with format="json". You can pass in argument for json.dumps

op(Player(), format="json", indent=2)

add_objprint also works with format="json"

@add_objprint(format="json", indent=2)
class Player:
    pass

include/exclude attributes

You can include/exclude attributes using regular expression so objprint will only print out the attributes you are interested in.

op(Player(), include=["name"])
<Player
  .name = 'Alice'
>
op(Player(), exclude=[".*s"])
<Player 0x7fe44e1e3070
  .name = 'Alice',
  .age = 18,
  .position = <Position
    .x = 3,
    .y = 5
  >
>

If you specify both include and exclude, it will do a inclusive check first, then filter out the attributes that match exclusive check.

include and exclude arguments work on objprint, objstr and @add_objprint.

config

objprint formats the output based on some configs

  • config_name(default_value) - this config's explanation
  • depth(100) - how deep objprint goes into nested data structures
  • indent(2) - the indentation
  • width(80) - the maximum width a data structure will be presented as a single line
  • elements(-1) - the maximum number of elements that will be displayed, -1 means no restriction
  • color(True) - whether to use colored scheme
  • skip_recursion(True) - whether skip printing recursive data, which would cause infinite recursion without depth constraint
  • honor_existing(True) - whether to use the existing user defined __repr__ or __str__ method

You can set the configs globally using config function

from objprint import config

config(indent=4)

Or you can do a one time config by passing the arguments into objprint function

from objprint import op

op(var, indent=4)

install

Maybe you don't want to import op in every single file that you want to use. You can use install to make it globally accessible

from objprint import install

# Now you can use op() in any file
install()

# You can specify a name for objprint()
install("my_print")
my_print(my_object)

Bugs/Requests

Please send bug reports and feature requests through github issue tracker.

License

Copyright Tian Gao, 2020-2021.

Distributed under the terms of the Apache 2.0 license.

Comments
  • 在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    如题

    from pydantic import BaseModel
    from objprint import op
    
    
    class pyt_class(BaseModel):
        x: int
        y: int
    
    
    obj_test = pyt_class(x=0, y=1)
    
    op(obj_test)
    print(obj_test)
    

    他打印:

    x=0 y=1
    x=0 y=1
    

    希望后续更新能够支持! (B站码农高天的视频我是期期都看,期期都三连)

    opened by Sclock 3
  • Also print the actual expression whose value is being printed

    Also print the actual expression whose value is being printed

    The https://github.com/gruns/icecream lib has an useful feature where it also prints the expression. Please see the following example:

    d = {'key': {1: 'one'}}
    ic(d['key'][1])
    
    class klass():
        attr = 'yep'
    ic(klass.attr)
    

    It prints:

    ic| d['key'][1]: 'one'
    ic| klass.attr: 'yep'
    

    As you can see icecream lib also prints the expression d['key'][1]. Is it possible to add this feature? This is the only feature holding me back from switching to objprint.

    opened by riyadparvez 3
  • Duplicate output when op() argument wasn't an object.

    Duplicate output when op() argument wasn't an object.

    import hashlib op(hashlib) <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'> <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'>

    a = [] a.append(a) op(a) [[ ... ]] [[...]]

    and so on

    opened by CokeStudios 2
  • type 类创建问题

    type 类创建问题

    通过type 构建的 class 通过 op 正确打印,这个feature 能否实现?

    from objprint import op
    
    class Action:
        pass
    
    def Category(label):
        return type("MCategory", (Action,), {"label": label,
                                            "__type__": "category"})
    
    
    class ECategory(Action):
        def __init__(self,label):
            self.label = label
            self.__type__ = 'category'
    
    
    
    mm = Category('test')
    nn = ECategory('test')
    op(mm)
    op(nn)
    
    >> <class '__main__.MCategory'>
    >> <UCategory 0x1f2da7b2b00
    >>   .label = 'test'
    >> >
    
    
    opened by wuqingjing2010 2
  • 如何实现“增量”打印?

    如何实现“增量”打印?

    您好!我正在使用objprint跟踪迭代过程,代码大致如下:

    for i in range(i_max):
        obj.step()
        op(obj)
    

    已知obj中有些变量在执行step后是不发生改变的,在第二次到最后一次调用op时,是否能够不打印这些变量?也就是只打印发生了变化的变量?

    opened by Saltsmart 2
  • weird escaped characters in jupyter notebook's output

    weird escaped characters in jupyter notebook's output

    I used pyreadstat module to read a simple SAS file. the code goes like this in jupyter notebook

    import pyreadstat as pyrs
    from objprint import op
    
    sas_path = './test_sas/foo.sas7bdat'
    df, meta = pyrs.read_sas7bdat(sas_path, metadataonly=True)
    # just wanted to check out what meta contains 
    op(meta)
    

    the brief output of current cell seems normal

    Output exceeds the [size limit]. Open the full output data[ in a text editor]
    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    ...
        'project': '$'
      },
      .variable_value_labels = {}
    >
    <pyreadstat._readstat_parser.metadata_container at 0x1bcf4bfa3e0>
    

    but after I clicked "in a text editor", the first lines look like this:

    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    

    the weird characters actually look like small suqares contains 3 small letters ESC in the text editor.

    opened by Asuralf 2
  • 在面对Enum对象时,输出的结果不符合预期。

    在面对Enum对象时,输出的结果不符合预期。

    测试代码:

    from enum import Enum
    from objprint import op,add_objprint
    
    class temp_a(Enum):
        a = 1
    
    @add_objprint
    class temp_b(Enum):
        b = 1
    
    print("temp_a:\n",temp_a,"\n")
    
    print("temp_a.a:\n",temp_a.a,"\n")
    
    print("op_temp_a:")
    op(temp_a)
    print("\n")
    
    print("op_temp_a.a:")
    op(temp_a.a)
    print("\n")
    
    print("================================================================\n")
    
    print("temp_b:\n",temp_b,"\n")
    
    print("temp_b.b:\n",temp_b.b,"\n")
    
    print("op_temp_b:")
    op(temp_b)
    print("\n")
    
    print("op_temp_b.b:")
    op(temp_b.b)
    print("\n")
    

    输出:

    temp_a:
     <enum 'temp_a'> 
    
    temp_a.a:
     temp_a.a
    
    op_temp_a:
    <enum 'temp_a'>
    
    
    op_temp_a.a:
    temp_a.a
    
    
    ================================================================
    
    temp_b:
     <enum 'temp_b'>
    
    temp_b.b:
     <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    
    op_temp_b:
    <enum 'temp_b'>
    
    
    op_temp_b.b:
    <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    

    符合直觉的结果应该是:

    class temp_a(Enum):
        a = 1
    op(temp_a)
    

    输出:

     <temp_a 0xFFFFFFFF
      .__objclass__ = <enum 'temp_a'>,
      .temp_a.a = < xxxxxxx
          ._name_ = 'b',
          ._value_ = 1
      >
    >
    
    opened by Sclock 2
  • 大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    //JavaScript function ad(a, b) {

    return a + b;
    

    }

    console.log(ad.toString())

    //输出 // function ad(a, b) { // // return a + b; // }

    //python def ad(a,b): return a+b print(ad)

    输出

    <function ad at 0x000002511B318550>

    opened by xuxiaobo-bobo 1
  • Change the output order of line number and arg name

    Change the output order of line number and arg name

    For the following example:

    from objprint import config, install, objjson, op
    
    config(line_number=True)
    config(arg_name=True)
    
    x = 1
    op(x)
    

    This is the output right now:

    x:
    <module> (/path/to/objprint-test.py:7)
    1
    

    What I think more intuitive is argument name followed by the value and the file and line number at the top. In this particular case:

    <module> (/path/to/objprint-test.py:7)
    x:
    1
    

    Any thoughts?

    opened by riyadparvez 1
  • question: how to use install()

    question: how to use install()

    I created two python file to play with the install() feature:

    temp1.py:

    from objprint import op, install
    
    # Now you can use op() in any file
    install()
    

    temp2.py:

    op("hello")
    

    But run the temp2.py, it throws error : NameError: name 'op' is not defined What is the correct usage of install() ? Thanks !

    opened by wwdok 1
  • 在打印链表的时候结构不是很清晰

    在打印链表的时候结构不是很清晰

    打印链表会输出

    <Node 0x18136a4bd30
      .next = <Node 0x18136a4b3d0
        .next = <Node 0x18136dd5750
          .next = <Node 0x18136dd5930
            .next = <Node 0x18136dd5810
              .next = <Node 0x18136dd5870
                .next = None,
                .value = 'node_5'
              >,
              .value = 'node_4'
            >,
            .value = 'node_3'
          >,
          .value = 'node_2'
        >,
        .value = 'node_1'
      >,
      .value = 'Head'
    >
    

    可以考虑在打印属性为对象的属性的时候缩进幅度大一些

    <Node 0x18136a4bd30
        .next = <Node 0x18136a4b3d0
                .next = <Node 0x18136dd5750
                        .next = <Node 0x18136dd5930
                                    .next = <Node 0x18136dd5810
                                            .next = <Node 0x18136dd5870
                                                    .next = None,
                                                    .value = 'node_5'
                                            >,
                                            .value = 'node_4'
                                    >,
                                    .value = 'node_3'
                        >,
                        .value = 'node_2'
                >,
                .value = 'node_1'
         >,
         .value = 'Head'
    >
    

    或者结构修改一下

    <Node 0x18136a4bd30 ->  .next = <Node 0x18136a4b3d0 ->  .next = <Node 0x18136dd5750 ->  .next = <Node 0x18136dd5930 ->  .next = <Node 0x18136dd5810 ->  .next = <Node 0x18136dd5870 ->  .next = None,
                                                                                                                                                                                            .value = 'node_5'
                                                                                                                                                                                            >,         
                                                                                                                                                            .value = 'node_4'
                                                                                                                                                            >,
                                                                                                                            .value = 'node_3'
                                                                                                                            >,
                                                                                            .value = 'node_2'
                                                                                            >,
                                                            .value = 'node_1'
                                                            >,
                            .value = 'Head'
                            >
    

    简单的建议,希望能优化一下!

    opened by Sclock 1
  • pydantic.BaseModel 对象无法正确打印

    pydantic.BaseModel 对象无法正确打印

    我在使用 pydantic + objprint,打印对象使用了 #52 中的方法,但程序在 op 处阻塞住。

    from objprint import op
    from pydantic import BaseModel
    
    
    class A(BaseModel):
        a: int
    
    
    obj = A(a=1)
    op(obj, honor_existing=False)
    
    opened by Eric-fuyc 2
  • Detect repl for returning objects

    Detect repl for returning objects

    Now op() returns the object it prints to make calling chain possible. But in repl, that will print two instances. We should fix that for a better user experience.

    opened by gaogaotiantian 0
Releases(0.2.2)
Owner
Author of VizTracer, watchpoints and objprint
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022