A TensorFlow implementation of DeepMind's WaveNet paper

Overview

A TensorFlow implementation of DeepMind's WaveNet paper

Build Status

This is a TensorFlow implementation of the WaveNet generative neural network architecture for audio generation.

The WaveNet neural network architecture directly generates a raw audio waveform, showing excellent results in text-to-speech and general audio generation (see the DeepMind blog post and paper for details).

The network models the conditional probability to generate the next sample in the audio waveform, given all previous samples and possibly additional parameters.

After an audio preprocessing step, the input waveform is quantized to a fixed integer range. The integer amplitudes are then one-hot encoded to produce a tensor of shape (num_samples, num_channels).

A convolutional layer that only accesses the current and previous inputs then reduces the channel dimension.

The core of the network is constructed as a stack of causal dilated layers, each of which is a dilated convolution (convolution with holes), which only accesses the current and past audio samples.

The outputs of all layers are combined and extended back to the original number of channels by a series of dense postprocessing layers, followed by a softmax function to transform the outputs into a categorical distribution.

The loss function is the cross-entropy between the output for each timestep and the input at the next timestep.

In this repository, the network implementation can be found in model.py.

Requirements

TensorFlow needs to be installed before running the training script. Code is tested on TensorFlow version 1.0.1 for Python 2.7 and Python 3.5.

In addition, librosa must be installed for reading and writing audio.

To install the required python packages, run

pip install -r requirements.txt

For GPU support, use

pip install -r requirements_gpu.txt

Training the network

You can use any corpus containing .wav files. We've mainly used the VCTK corpus (around 10.4GB, Alternative host) so far.

In order to train the network, execute

python train.py --data_dir=corpus

to train the network, where corpus is a directory containing .wav files. The script will recursively collect all .wav files in the directory.

You can see documentation on each of the training settings by running

python train.py --help

You can find the configuration of the model parameters in wavenet_params.json. These need to stay the same between training and generation.

Global Conditioning

Global conditioning refers to modifying the model such that the id of a set of mutually-exclusive categories is specified during training and generation of .wav file. In the case of the VCTK, this id is the integer id of the speaker, of which there are over a hundred. This allows (indeed requires) that a speaker id be specified at time of generation to select which of the speakers it should mimic. For more details see the paper or source code.

Training with Global Conditioning

The instructions above for training refer to training without global conditioning. To train with global conditioning, specify command-line arguments as follows:

python train.py --data_dir=corpus --gc_channels=32

The --gc_channels argument does two things:

  • It tells the train.py script that it should build a model that includes global conditioning.
  • It specifies the size of the embedding vector that is looked up based on the id of the speaker.

The global conditioning logic in train.py and audio_reader.py is "hard-wired" to the VCTK corpus at the moment in that it expects to be able to determine the speaker id from the pattern of file naming used in VCTK, but can be easily be modified.

Generating audio

Example output generated by @jyegerlehner based on speaker 280 from the VCTK corpus.

You can use the generate.py script to generate audio using a previously trained model.

Generating without Global Conditioning

Run

python generate.py --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

where logdir/train/2017-02-13T16-45-34/model.ckpt-80000 needs to be a path to previously saved model (without extension). The --samples parameter specifies how many audio samples you would like to generate (16000 corresponds to 1 second by default).

The generated waveform can be played back using TensorBoard, or stored as a .wav file by using the --wav_out_path parameter:

python generate.py --wav_out_path=generated.wav --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Passing --save_every in addition to --wav_out_path will save the in-progress wav file every n samples.

python generate.py --wav_out_path=generated.wav --save_every 2000 --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Fast generation is enabled by default. It uses the implementation from the Fast Wavenet repository. You can follow the link for an explanation of how it works. This reduces the time needed to generate samples to a few minutes.

To disable fast generation:

python generate.py --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000 --fast_generation=false

Generating with Global Conditioning

Generate from a model incorporating global conditioning as follows:

python generate.py --samples 16000  --wav_out_path speaker311.wav --gc_channels=32 --gc_cardinality=377 --gc_id=311 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Where:

--gc_channels=32 specifies 32 is the size of the embedding vector, and must match what was specified when training.

--gc_cardinality=377 is required as 376 is the largest id of a speaker in the VCTK corpus. If some other corpus is used, then this number should match what is automatically determined and printed out by the train.py script at training time.

--gc_id=311 specifies the id of speaker, speaker 311, for which a sample is to be generated.

Running tests

Install the test requirements

pip install -r requirements_test.txt

Run the test suite

./ci/test.sh

Missing features

Currently there is no local conditioning on extra information which would allow context stacks or controlling what speech is generated.

Related projects

Owner
Igor Babuschkin
Igor Babuschkin
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022