RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Overview

RecList

Documentation Status Contributors License Downloads

RecList

Overview

RecList is an open source library providing behavioral, "black-box" testing for recommender systems. Inspired by the pioneering work of Ribeiro et al. 2020 in NLP, we introduce a general plug-and-play procedure to scale up behavioral testing, with an easy-to-extend interface for custom use cases.

RecList ships with some popular datasets and ready-made behavioral tests: check the paper for more details on the relevant literature and the philosophical motivations behind the project.

If you are not familiar with the library, we suggest first taking our small tour to get acquainted with the main abstractions through ready-made models and public datasets.

Quick Links

  • Our paper, with in-depth analysis, detailed use cases and scholarly references.
  • A colab notebook (WIP), showing how to train a cart recommender model from scratch and use the library to test it.
  • Our blog post (forthcoming), with examples and practical tips.

Project updates

Nov. 2021: the library is currently in alpha. We welcome contributions and feedback, but please be advised that the package may change substantially in the upcoming months.

As the project is in active development, come back often for updates.

Summary

This doc is structured as follows:

Quick Start

If you want to see RecList in action, clone the repository, create and activate a virtual env, and install the required packages from root. If you prefer to experiment in an interactive, no-installation-required fashion, try out our colab notebook.

Sample scripts are divided by use-cases: similar items, complementary items or session-based recommendations. When executing one, a suitable public dataset will be downloaded, and a baseline ML model trained: finally, the script will run a pre-made suite of behavioral tests to show typical results.

git clone https://github.com/jacopotagliabue/reclist
cd reclist
python3 -m venv venv
source venv/bin/activate
pip install -e .
python examples/coveo_complementary_rec.py

Running your model on one of the supported dataset, leveraging the pre-made tests, is as easy as implementing a simple interface, RecModel.

Once you've run successfully the sample script, take the guided tour below to learn more about the abstractions and the out-of-the-box capabilities of RecList.

A Guided Tour

An instance of RecList represents a suite of tests for recommender systems: given a dataset (more appropriately, an instance of RecDataset) and a model (an instance of RecModel), it will run the specified tests on the target dataset, using the supplied model.

For example, the following code instantiates a pre-made suite of tests that contains sensible defaults for a cart recommendation use case:

rec_list = CoveoCartRecList(
    model=model,
    dataset=coveo_dataset
)
# invoke rec_list to run tests
rec_list(verbose=True)

Our library pre-packages standard recSys KPIs and important behavioral tests, divided by use cases, but it is built with extensibility in mind: you can re-use tests in new suites, or you can write new domain-specific suites and tests.

Any suite must inherit the RecList interface, and then declare with Pytonic decorators its tests: in this case, the test re-uses a standard function:

class MyRecList(RecList):

    @rec_test(test_type='stats')
    def basic_stats(self):
        """
        Basic statistics on training, test and prediction data
        """
        from reclist.metrics.standard_metrics import statistics
        return statistics(self._x_train,
            self._y_train,
            self._x_test,
            self._y_test,
            self._y_preds)

Any model can be tested, as long as its predictions are wrapped in a RecModel. This allows for pure "black-box" testings, a SaaS provider can be tested just by wrapping the proper API call in the method:

class MyCartModel(RecModel):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def predict(self, prediction_input: list, *args, **kwargs):
        """
        Implement the abstract method, accepting a list of lists, each list being
        the content of a cart: the predictions returned by the model are the top K
        items suggested to complete the cart.
        """

        return

While many standard KPIs are available in the package, the philosophy behind RecList is that metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production.

RecList recognizes that outside of academic benchmarks, some mistakes are worse than others, and not all inputs are created equal: when possible, it tries to operationalize through scalable code behavioral insights for debugging and error analysis; it also provides extensible abstractions when domain knowledge and custom logic are needed.

Once you run a suite of tests, results are dumped automatically and versioned in a local folder, structured as follows (name of the suite, name of the model, run timestamp):

.reclist/
  myList/
    myModel/
      1637357392/
      1637357404/

We provide a simple (and very WIP) UI to easily compare runs and models. After you run two times one of the example scripts, you can do:

cd app
python app.py

to start a local web app that lets you explore test results:

https://github.com/jacopotagliabue/reclist/blob/main/images/explorer.png

If you select more than model, the app will automatically build comparison tables:

https://github.com/jacopotagliabue/reclist/blob/main/images/comparison.png

If you start using RecList as part of your standard testings - either for research or production purposes - you can use the JSON report for machine-to-machine communication with downstream system (e.g. you may want to automatically fail the model pipeline if certain behavioral tests are not passed).

Capabilities

RecList provides a dataset and model agnostic framework to scale up behavioral tests. As long as the proper abstractions are implemented, all the out-of-the-box components can be re-used. For example:

  • you can use a public dataset provided by RecList to train your new cart recommender model, and then use the RecTests we provide for that use case;
  • you can use some baseline model on your custom dataset, to establish a baseline for your project;
  • you can use a custom model, on a private dataset and define from scratch a new suite of tests, mixing existing methods and domain-specific tests.

We list below what we currently support out-of-the-box, with particular focus on datasets and tests, as the models we provide are convenient baselines, but they are not meant to be SOTA research models.

Datasets

RecList features convenient wrappers around popular datasets, to help test models over known benchmarks in a standardized way.

Behavioral Tests

Coming soon!

Roadmap

To do:

  • the app is just a stub: improve the report "contract" and extend the app capabilities, possibly including it in the library itself;
  • continue adding default RecTests by use cases, and test them on public datasets;
  • improving our test suites and refactor some abstractions;
  • adding Colab tutorials, extensive documentation and a blog-like write-up to explain the basic usage.

We maintain a small Trello board on the project which we plan on sharing with the community: more details coming soon!

Contributing

We will update this repo with some guidelines for contributions as soon as the codebase becomes more stable. Check back often for updates!

Acknowledgments

The main contributors are:

If you have questions or feedback, please reach out to: jacopo dot tagliabue at tooso dot ai.

License and Citation

All the code is released under an open MIT license. If you found RecList useful, or you are using it to benchmark/debug your model, please cite our pre-print (forhtcoming):

@inproceedings{Chia2021BeyondNB,
  title={Beyond NDCG: behavioral testing of recommender systems with RecList},
  author={Patrick John Chia and Jacopo Tagliabue and Federico Bianchi and Chloe He and Brian Ko},
  year={2021}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022