Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

Overview

VIN: Value Iteration Networks

Architecture of Value Iteration Network

A quick thank you

A few others have released amazing related work which helped inspire and improve my own implementation. It goes without saying that this release would not be nearly as good if it were not for all of the following:

Why another VIN implementation?

  1. The Pytorch VIN model in this repository is, in my opinion, more readable and closer to the original Theano implementation than others I have found (both Tensorflow and Pytorch).
  2. This is not simply an implementation of the VIN model in Pytorch, it is also a full Python implementation of the gridworld environments as used in the original MATLAB implementation.
  3. Provide a more extensible research base for others to build off of without needing to jump through the possible MATLAB paywall.

Installation

This repository requires following packages:

Use pip to install the necessary dependencies:

pip install -U -r requirements.txt 

Note that PyTorch cannot be installed directly from PyPI; refer to http://pytorch.org/ for custom installation instructions specific to your needs.

How to train

8x8 gridworld

python train.py --datafile dataset/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128

16x16 gridworld

python train.py --datafile dataset/gridworld_16x16.npz --imsize 16 --lr 0.002 --epochs 30 --k 20 --batch_size 128

28x28 gridworld

python train.py --datafile dataset/gridworld_28x28.npz --imsize 28 --lr 0.002 --epochs 30 --k 36 --batch_size 128

Flags:

  • datafile: The path to the data files.
  • imsize: The size of input images. One of: [8, 16, 28]
  • lr: Learning rate with RMSProp optimizer. Recommended: [0.01, 0.005, 0.002, 0.001]
  • epochs: Number of epochs to train. Default: 30
  • k: Number of Value Iterations. Recommended: [10 for 8x8, 20 for 16x16, 36 for 28x28]
  • l_i: Number of channels in input layer. Default: 2, i.e. obstacles image and goal image.
  • l_h: Number of channels in first convolutional layer. Default: 150, described in paper.
  • l_q: Number of channels in q layer (~actions) in VI-module. Default: 10, described in paper.
  • batch_size: Batch size. Default: 128

How to test / visualize paths (requires training first)

8x8 gridworld

python test.py --weights trained/vin_8x8.pth --imsize 8 --k 10

16x16 gridworld

python test.py --weights trained/vin_16x16.pth --imsize 16 --k 20

28x28 gridworld

python test.py --weights trained/vin_28x28.pth --imsize 28 --k 36

To visualize the optimal and predicted paths simply pass:

--plot

Flags:

  • weights: Path to trained weights.
  • imsize: The size of input images. One of: [8, 16, 28]
  • plot: If supplied, the optimal and predicted paths will be plotted
  • k: Number of Value Iterations. Recommended: [10 for 8x8, 20 for 16x16, 36 for 28x28]
  • l_i: Number of channels in input layer. Default: 2, i.e. obstacles image and goal image.
  • l_h: Number of channels in first convolutional layer. Default: 150, described in paper.
  • l_q: Number of channels in q layer (~actions) in VI-module. Default: 10, described in paper.

Results

Gridworld Sample One Sample Two
8x8
16x16
28x28

Datasets

Each data sample consists of an obstacle image and a goal image followed by the (x, y) coordinates of current state in the gridworld.

Dataset size 8x8 16x16 28x28
Train set 81337 456309 1529584
Test set 13846 77203 251755

The datasets (8x8, 16x16, and 28x28) included in this repository can be reproduced using the dataset/make_training_data.py script. Note that this script is not optimized and runs rather slowly (also uses a lot of memory :D)

Performance: Success Rate

This is the success rate from rollouts of the learned policy in the environment (taken over 5000 randomly generated domains).

Success Rate 8x8 16x16 28x28
PyTorch 99.69% 96.99% 91.07%

Performance: Test Accuracy

NOTE: This is the accuracy on test set. It is different from the table in the paper, which indicates the success rate from rollouts of the learned policy in the environment.

Test Accuracy 8x8 16x16 28x28
PyTorch 99.83% 94.84% 88.54%
Comments
  • testing accuracy fairly low

    testing accuracy fairly low

    I just tried to follow the instructions in the repo, and tested models trained but got a fairly low accuracy. I'm using pyTorch 0.1.12_1. Is there anything I should pay attention to?

    opened by xinleipan 10
  • Prebuilt Dataset Generation

    Prebuilt Dataset Generation

    Hello,

    I was wondering how you generated the prebuilt datasets that are downloaded when running download_weights_and_datasets.sh, i.e. what were the max_obs and max_obs_size parameters?

    Did you follow this file in the original repo? https://github.com/avivt/VIN/blob/master/scripts/make_data_gridworld_nips.m

    Thanks, Emilio

    opened by eparisotto 5
  • the rollout accuracy in test script is lower than the test accuracy in train script.

    the rollout accuracy in test script is lower than the test accuracy in train script.

    Hello!

    I have a little doubt.Does the rollout accuracy indicate the success rate? If so, why is it lower than the prediction accuracy? In the Aviv's implementation, the success rate of the 8x8 grid world was as high as 99.6%. Why is the success rate in your experiment relatively low?

    Thanks!

    opened by albzni 4
  • RUN ERROR

    RUN ERROR

    when I run 'python train.py --datafile dataset/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128', it's ok,but again 'python train.py --datafile dataset/gridworld_16x16.npz --imsize 16 --lr 0.002 --epochs 30 --k 20 --batch_size 128' was run, an error occurred as follows: [email protected]:~/pytorch-value-iteration-networks$ python train.py --datafile dataset/gridworld_16x16.npz --imsize 16 --lr 0.002 --epochs 10 --k 20 --batch_size 128 Traceback (most recent call last): File "train.py", line 135, in config.datafile, imsize=config.imsize, train=True, transform=transform) File "/home/ni/pytorch-value-iteration-networks/dataset/dataset.py", line 22, in init self._process(file, self.train) File "/home/ni/pytorch-value-iteration-networks/dataset/dataset.py", line 58, in _process images = images.astype(np.float32) MemoryError

    opened by N-Kingsley 3
  • Problem of running the test script

    Problem of running the test script

    Hello,

    I downloaded the data with the .sh downloading script you provided, I also got an nps weights file after training. When I ran the testing command I got the following error: Traceback (most recent call last): File "/home/research/DL/VIN/pytorch-value-iteration-networks/test.py", line 158, in main(config) File "/home/research/DL/VIN/pytorch-value-iteration-networks/test.py", line 85, in main _, predictions = vin(X_in, S1_in, S2_in, config) File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 357, in call result = self.forward(*input, **kwargs) File "/home/research/DL/VIN/pytorch-value-iteration-networks/model.py", line 64, in forward return logits, self.sm(logits) File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 352, in call for hook in self._forward_pre_hooks.values(): File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 398, in getattr type(self).name, name)) AttributeError: 'Softmax' object has no attribute '_forward_pre_hooks'

    Thanks for helping!

    opened by YantianZha 3
  • Improved readability of the VIN model, in addition to minor changes

    Improved readability of the VIN model, in addition to minor changes

    My main modification is in the forward method of the model where you extract the q_out from the q values, and not repeating q = F.conv2d(...) in two places. I also made minor improvements, such as adding argparse in the dataset creation script and changing .cuda() into .to(device) in test.py.

    opened by shuishida 2
  • Inconsistent tensor sizes when starting training

    Inconsistent tensor sizes when starting training

    Hey there. I'm trying to run

    python train.py --datafile dataset/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128
    

    But I get the following error

    Number of Train Samples: 103926
    Number of Test Samples: 17434
         Epoch | Train Loss | Train Error | Epoch Time
    Traceback (most recent call last):
      File "train.py", line 147, in <module>
        train(net, trainloader, config, criterion, optimizer, use_GPU)
      File "train.py", line 40, in train
        outputs, predictions = net(X, S1, S2, config)
      File "/home/j1k1000o/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__
        result = self.forward(*input, **kwargs)
      File "/media/user_home2/j1k1000o/j1k/VINs/pytorch-value-iteration-networks/model.py", line 44, in forward
        q = F.conv2d(torch.cat([r, v], 1), 
      File "/home/j1k1000o/anaconda3/lib/python3.6/site-packages/torch/autograd/variable.py", line 897, in cat
        return Concat.apply(dim, *iterable)
      File "/home/j1k1000o/anaconda3/lib/python3.6/site-packages/torch/autograd/_functions/tensor.py", line 317, in forward
        return torch.cat(inputs, dim)
    RuntimeError: inconsistent tensor sizes at /opt/conda/conda-bld/pytorch_1502009910772/work/torch/lib/THC/generic/THCTensorMath.cu:141
    

    I've executed

    ./download_weights_and_datasets.sh
    

    as well as

    python ./dataset/make_training_data.py
    

    And I'm running it on an Ubuntu 16.04, python 3.6 and with all the requirements installed.

    Can you help me out?

    opened by juancprzs 2
  • Don't understand VIN last step

    Don't understand VIN last step

        slice_s1 = S1.long().expand(config.imsize, 1, config.l_q, q.size(0))
        slice_s1 = slice_s1.permute(3, 2, 1, 0)
        q_out = q.gather(2, slice_s1).squeeze(2)
    

    What does this 3 lines do?

    opened by QiXuanWang 1
  • KeyError: 'arr_1 is not a file in the archive'

    KeyError: 'arr_1 is not a file in the archive'

    python3 train.py --datafile dataset/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128 Traceback (most recent call last): File "train.py", line 135, in config.datafile, imsize=config.imsize, train=True, transform=transform) File "/home/user/pytorch/tutorials/valueiterationnetworks/pytorch-value-iteration-networks/dataset/dataset.py", line 22, in init self._process(file, self.train) File "/home/user/pytorch/tutorials/valueiterationnetworks/pytorch-value-iteration-networks/dataset/dataset.py", line 49, in _process S1 = f['arr_1'] File "/home/user/miniconda3/lib/python3.6/site-packages/numpy/lib/npyio.py", line 255, in getitem raise KeyError("%s is not a file in the archive" % key) KeyError: 'arr_1 is not a file in the archive'

    I got this error, could you please

    opened by derelearnro 1
  • Problem of running dataset/make_training_data.py script

    Problem of running dataset/make_training_data.py script

    Hi

    When I tried to run the make_training_data.py script to generate the gridworld.npz file, I got the following error:

    FileNotFoundError: [Errno 2] No such file or directory: 'dataset/gridworld_28x28.npz'
    

    And I found that line 101 should be modified as follows:

    save_path = "gridworld_{0}x{1}".format(dom_size[0], dom_size[1])
    
    opened by ruqing00 0
Owner
Kent Sommer
Software Engineer @ Toyota Research Institute (SF Bay Area)
Kent Sommer
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022