continued
WoRkS English
中文
Français
Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法)
1. Kernel / k-Nearest Neighborhood Density Estimators (核密度估计 / K邻近密度估计)
- KDE: Fix volume, determine number of points in this volume
- K-NN: Fix the number of points and increase the volume to include this number of points
python apply.py
2. Expectation Maximization (EM) Algo for Gaussian Mixture Model (GMM) (应用于高斯混合模型的期望最大化算法)
- EM algo is sensible to init, we can use k-means fist for some steps
kmeans = KMeans(n_clusters = K, n_init = 10).fit(data)
python apply.py