DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

Overview

DiffWave

PyPI Release License

DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via iterative refinement. The speech can be controlled by providing a conditioning signal (e.g. log-scaled Mel spectrogram). The model and architecture details are described in DiffWave: A Versatile Diffusion Model for Audio Synthesis.

What's new (2021-11-09)

  • unconditional waveform synthesis (thanks to Andrechang!)

What's new (2021-04-01)

  • fast sampling algorithm based on v3 of the DiffWave paper

What's new (2020-10-14)

  • new pretrained model trained for 1M steps
  • updated audio samples with output from new model

Status (2021-11-09)

  • fast inference procedure
  • stable training
  • high-quality synthesis
  • mixed-precision training
  • multi-GPU training
  • command-line inference
  • programmatic inference API
  • PyPI package
  • audio samples
  • pretrained models
  • unconditional waveform synthesis

Big thanks to Zhifeng Kong (lead author of DiffWave) for pointers and bug fixes.

Audio samples

22.05 kHz audio samples

Pretrained models

22.05 kHz pretrained model (31 MB, SHA256: d415d2117bb0bba3999afabdd67ed11d9e43400af26193a451d112e2560821a8)

This pre-trained model is able to synthesize speech with a real-time factor of 0.87 (smaller is faster).

Pre-trained model details

  • trained on 4x 1080Ti
  • default parameters
  • single precision floating point (FP32)
  • trained on LJSpeech dataset excluding LJ001* and LJ002*
  • trained for 1000578 steps (1273 epochs)

Install

Install using pip:

pip install diffwave

or from GitHub:

git clone https://github.com/lmnt-com/diffwave.git
cd diffwave
pip install .

Training

Before you start training, you'll need to prepare a training dataset. The dataset can have any directory structure as long as the contained .wav files are 16-bit mono (e.g. LJSpeech, VCTK). By default, this implementation assumes a sample rate of 22.05 kHz. If you need to change this value, edit params.py.

python -m diffwave.preprocess /path/to/dir/containing/wavs
python -m diffwave /path/to/model/dir /path/to/dir/containing/wavs

# in another shell to monitor training progress:
tensorboard --logdir /path/to/model/dir --bind_all

You should expect to hear intelligible (but noisy) speech by ~8k steps (~1.5h on a 2080 Ti).

Multi-GPU training

By default, this implementation uses as many GPUs in parallel as returned by torch.cuda.device_count(). You can specify which GPUs to use by setting the CUDA_DEVICES_AVAILABLE environment variable before running the training module.

Inference API

Basic usage:

from diffwave.inference import predict as diffwave_predict

model_dir = '/path/to/model/dir'
spectrogram = # get your hands on a spectrogram in [N,C,W] format
audio, sample_rate = diffwave_predict(spectrogram, model_dir, fast_sampling=True)

# audio is a GPU tensor in [N,T] format.

Inference CLI

python -m diffwave.inference --fast /path/to/model /path/to/spectrogram -o output.wav

References

Owner
LMNT
LMNT
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023