Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Overview

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation

In this repo, we provide the code for our paper : "Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?", available at https://arxiv.org/abs/2012.06166:

Getting Started

Minimum requirements

  1. Software :
  • torch==1.7.0
  • numpy==1.18.4
  • cv2==4.2.0
  • pyyaml==5.3.1

For both training and testing, metrics monitoring is done through visdom_logger (https://github.com/luizgh/visdom_logger). To install this package with pip, use the following command:

pip install git+https://github.com/luizgh/visdom_logger.git
  1. Hardware : A 11 GB+ CUDA-enabled GPU

Download data

All pre-processed from Google Drive

We provide the versions of Pascal-VOC 2012 and MS-COCO 2017 used in this work at https://drive.google.com/file/d/1Lj-oBzBNUsAqA9y65BDrSQxirV8S15Rk/view?usp=sharing. You can download the full .zip and directly extract it at the root of this repo.

If the previous download failed

Here is the structure of the data folder for you to reproduce:

data
├── coco
│   ├── annotations
│   ├── train
│   ├── train2014
│   ├── val
│   └── val2014
└── pascal
|    ├── JPEGImages
|    └── SegmentationClassAug

Pascal : The JPEG images can be found in the PascalVOC 2012 toolkit to be downloaded at PascalVOC2012 and SegmentationClassAug (pre-processed ground-truth masks).

Coco : Coco 2014 train, validation images and annotations can be downloaded at Coco. Once this is done, you will have to generate the subfolders coco/train and coco/val (ground truth masks). Both folders can be generated by executing the python script data/coco/create_masks.py (note that the script uses the package pycocotools that can be found at https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools):

python

cd data/coco
python create_masks.py

About the train/val splits

The train/val splits are directly provided in lists/. How they were obtained is explained at https://github.com/Jia-Research-Lab/PFENet

Download pre-trained models

Pre-trained backbones

First, you will need to download the ImageNet pre-trained backbones at https://drive.google.com/drive/folders/1Hrz1wOxOZm4nIIS7UMJeL79AQrdvpj6v and put them under initmodel/. These will be used if you decide to train your models from scratch.

Pre-trained models

We directly provide the full pre-trained models at https://drive.google.com/file/d/1iuMAo5cJ27oBdyDkUI0JyGIEH60Ln2zm/view?usp=sharing. You can download them and directly extract them at the root of this repo. This includes Resnet50 and Resnet101 backbones on Pascal-5i, and Resnet50 on Coco-20i.

Overview of the repo

Data are located in data/. All the code is provided in src/. Default configuration files can be found in config_files/. Training and testing scripts are located in scripts/. Lists/ contains the train/validation splits for each dataset.

Training (optional)

If you want to use the pre-trained models, this step is optional. Otherwise, you can train your own models from scratch with the scripts/train.sh script, as follows.

bash scripts/train.sh {data} {fold} {[gpu_ids]} {layers}

For instance, if you want to train a Resnet50-based model on the fold-0 of Pascal-5i on GPU 1, use:

bash scripts/train.sh pascal 0 [1] 50

Note that this code supports distributed training. If you want to train on multiple GPUs, you may simply replace [1] in the previous examples with the list of gpus_id you want to use.

Testing

To test your models, use the scripts/test.sh script, the general synthax is:

bash scripts/test.sh {data} {shot} {[gpu_ids]} {layers}

This script will test successively on all folds of the current dataset. Below are presented specific commands for several experiments.

Pascal-5i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 59.8 / 64.6 68.3 / 71.4 62.1 / 71.1 48.5 / 59.3 59.7 / 66.6
Oracle-RePRI Resnet-50 72.4 / 75.1 78.0 / 80.8 77.1 / 81.4 65.8 / 74.4 73.3 / 77.9
RePRI Resnet-101 59.6 / 66.2 68.3 / 71.4 62.2 / 67.0 47.2 / 57.7 59.4 / 65.6
Oracle-RePRI Resnet-101 73.9 / 76.8 79.7 / 81.7 76.1 / 79.5 65.1 / 74.5 73.7 / 78.1

Command:

bash scripts/test.sh pascal 1 [0] 50  # 1-shot
bash scripts/test.sh pascal 5 [0] 50  # 5-shot

Coco-20i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 32.0 / 39.3 38.7 / 45.4 32.7 / 39.7 33.1 / 41.8 34.1/41.6
Oracle-RePRI Resnet-50 49.3 / 51.5 51.4 / 60.8 38.2 / 54.7 41.6 / 55.2 45.1 / 55.5

Command :

bash scripts/test.sh coco 1 [0] 50  # 1-shot
bash scripts/test.sh coco 5 [0] 50  # 5-shot

Coco-20i -> Pascal-VOC

The folds used for cross-domain experiments are presented in the image below:

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 52.8 / 57.7 64.0 / 66.1 64.1 / 67.6 71.5 / 73.1 63.1 / 66.2
Oracle-RePRI Resnet-50 69.6 / 73.5 71.7 / 74.9 77.6 / 82.2 86.2 / 88.1 76.2 / 79.7

Command :

bash scripts/test.sh coco2pascal 1 [0] 50  # 1-shot
bash scripts/test.sh coco2pascal 5 [0] 50  # 5-shot

Monitoring metrics

For both training and testing, you can monitor metrics using visdom_logger (https://github.com/luizgh/visdom_logger). To install this package, simply clone the repo and install it with pip:

git clone https://github.com/luizgh/visdom_logger.git
pip install -e visdom_logger

Then, you need to start a visdom server with:

python -m visdom.server -port 8098

Finally, add the line visdom_port 8098 in the options in scripts/train.sh or scripts/test.sh, and metrics will be displayed at this port. You can monitor them through your navigator.

Contact

For further questions or details, please post an issue or directly reach out to Malik Boudiaf ([email protected])

Acknowledgments

We gratefully thank the authors of https://github.com/Jia-Research-Lab/PFENet, as well as https://github.com/hszhao/semseg from which some parts of our code are inspired.

Owner
Malik Boudiaf
Malik Boudiaf
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022