[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

Overview

MDCA Calibration

This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration".

Abstract

Deep Neural Networks (DNNs) make overconfident mistakes which can prove to be probematic in deployment in safety critical applications. Calibration is aimed to enhance trust in DNNs. The goal of our proposed Multi-Class Difference in Confidence and Accuracy (MDCA) loss is to align the probability estimates in accordance with accuracy thereby enhancing the trust in DNN decisions. MDCA can be used in case of image classification, image segmentation, and natural language classification tasks.

Teaser

Above image shows comparison of classwise reliability diagrams of Cross-Entropy vs. our proposed method.

Requirements

  • Python 3.8
  • PyTorch 1.8

Directly install using pip

 pip install -r requirements.txt

Training scripts:

Refer to the scripts folder to train for every model and dataset. Overall the command to train looks like below where each argument can be changed accordingly on how to train. Also refer to dataset/__init__.py and models/__init__.py for correct arguments to train with. Argument parser can be found in utils/argparser.py.

Train with cross-entropy:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss cross_entropy 

Train with FL+MDCA: Also mention the gamma (for Focal Loss) and beta (Weight assigned to MDCA) to train FL+MDCA with

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss FL+MDCA --gamma 1.0 --beta 1.0 

Train with NLL+MDCA:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss NLL+MDCA --beta 1.0

Post Hoc Calibration:

To do post-hoc calibration, we can use the following command.

lr and patience value is used for Dirichlet calibration. To change range of grid-search in dirichlet calibration, refer to posthoc_calibrate.py.

python posthoc_calibrate.py --dataset cifar10 --model resnet56 --lr 0.001 --patience 5 --checkpoint path/to/your/trained/model

Other Experiments (Dataset Drift, Dataset Imbalance):

experiments folder contains our experiments on PACS, Rotated MNIST and Imbalanced CIFAR10. Please refer to the scripts provided to run them.

Citation

If you find our work useful in your research, please cite the following:

@InProceedings{StitchInTime,
    author    = {R. Hebbalaguppe, J. Prakash, N. Madan, C. Arora},
    title     = {A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022}
}

Contact

For questions about our paper or code, please contact any of the authors (@neelabh17, @bicycleman15, @rhebbalaguppe ) or raise an issue on GitHub.

References:

The code is adapted from the following repositories:

[1] bearpaw/pytorch-classification [2] torrvision/focal_calibration [3] Jonathan-Pearce/calibration_library

Owner
MDCA Calibration
MDCA Calibration
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022