Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

Overview

GSCNN

This is the official code for:

Gated-SCNN: Gated Shape CNNs for Semantic Segmentation

Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

ICCV 2019 [Paper] [Project Page]

GSCNN DEMO

Based on based on https://github.com/NVIDIA/semantic-segmentation.

License

Copyright (C) 2019 NVIDIA Corporation. Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler
All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Permission to use, copy, modify, and distribute this software and its documentation
for any non-commercial purpose is hereby granted without fee, provided that the above
copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of the author
not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
~                                                                             

Usage

Clone this repo
git clone https://github.com/nv-tlabs/GSCNN
cd GSCNN

Python requirements

Currently, the code supports Python 3

  • numpy
  • PyTorch (>=1.1.0)
  • torchvision
  • scipy
  • scikit-image
  • tensorboardX
  • tqdm
  • torch-encoding
  • opencv
  • PyYAML

Download pretrained models

Download the pretrained model from the Google Drive Folder, and save it in 'checkpoints/'

Download inferred images

Download (if needed) the inferred images from the Google Drive Folder

Evaluation (Cityscapes)

python train.py --evaluate --snapshot checkpoints/best_cityscapes_checkpoint.pth

Training

A note on training- we train on 8 NVIDIA GPUs, and as such, training will be an issue with WiderResNet38 if you try to train on a single GPU.

If you use this code, please cite:

@article{takikawa2019gated,
  title={Gated-SCNN: Gated Shape CNNs for Semantic Segmentation},
  author={Takikawa, Towaki and Acuna, David and Jampani, Varun and Fidler, Sanja},
  journal={ICCV},
  year={2019}
}
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022