Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

Overview

torchtyping

Type annotations for a tensor's shape, dtype, names, ...

Turn this:

def batch_outer_product(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    # x has shape (batch, x_channels)
    # y has shape (batch, y_channels)
    # return has shape (batch, x_channels, y_channels)

    return x.unsqueeze(-1) * y.unsqueeze(-2)

into this:

def batch_outer_product(x:   TensorType["batch", "x_channels"],
                        y:   TensorType["batch", "y_channels"]
                        ) -> TensorType["batch", "x_channels", "y_channels"]:

    return x.unsqueeze(-1) * y.unsqueeze(-2)

with programmatic checking that the shape (dtype, ...) specification is met.

Bye-bye bugs! Say hello to enforced, clear documentation of your code.

If (like me) you find yourself littering your code with comments like # x has shape (batch, hidden_state) or statements like assert x.shape == y.shape , just to keep track of what shape everything is, then this is for you.


Installation

pip install torchtyping

Requires Python 3.7+ and PyTorch 1.7.0+.

Usage

torchtyping allows for type annotating:

  • shape: size, number of dimensions;
  • dtype (float, integer, etc.);
  • layout (dense, sparse);
  • names of dimensions as per named tensors;
  • arbitrary number of batch dimensions with ...;
  • ...plus anything else you like, as torchtyping is highly extensible.

If typeguard is (optionally) installed then at runtime the types can be checked to ensure that the tensors really are of the advertised shape, dtype, etc.

# EXAMPLE

from torch import rand
from torchtyping import TensorType, patch_typeguard
from typeguard import typechecked

patch_typeguard()  # use before @typechecked

@typechecked
def func(x: TensorType["batch"],
         y: TensorType["batch"]) -> TensorType["batch"]:
    return x + y

func(rand(3), rand(3))  # works
func(rand(3), rand(1))
# TypeError: Dimension 'batch' of inconsistent size. Got both 1 and 3.

typeguard also has an import hook that can be used to automatically test an entire module, without needing to manually add @typeguard.typechecked decorators.

If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes. If you're not already using typeguard for your regular Python programming, then strongly consider using it. It's a great way to squash bugs. Both typeguard and torchtyping also integrate with pytest, so if you're concerned about any performance penalty then they can be enabled during tests only.

API

torchtyping.TensorType[shape, dtype, layout, details]

The core of the library.

Each of shape, dtype, layout, details are optional.

  • The shape argument can be any of:
    • An int: the dimension must be of exactly this size. If it is -1 then any size is allowed.
    • A str: the size of the dimension passed at runtime will be bound to this name, and all tensors checked that the sizes are consistent.
    • A ...: An arbitrary number of dimensions of any sizes.
    • A str: int pair (technically it's a slice), combining both str and int behaviour. (Just a str on its own is equivalent to str: -1.)
    • A str: ... pair, in which case the multiple dimensions corresponding to ... will be bound to the name specified by str, and again checked for consistency between arguments.
    • None, which when used in conjunction with is_named below, indicates a dimension that must not have a name in the sense of named tensors.
    • A None: int pair, combining both None and int behaviour. (Just a None on its own is equivalent to None: -1.)
    • A typing.Any: Any size is allowed for this dimension (equivalent to -1).
    • Any tuple of the above. For example.TensorType["batch": ..., "length": 10, "channels", -1]. If you just want to specify the number of dimensions then use for example TensorType[-1, -1, -1] for a three-dimensional tensor.
  • The dtype argument can be any of:
    • torch.float32, torch.float64 etc.
    • int, bool, float, which are converted to their corresponding PyTorch types. float is specifically interpreted as torch.get_default_dtype(), which is usually float32.
  • The layout argument can be either torch.strided or torch.sparse_coo, for dense and sparse tensors respectively.
  • The details argument offers a way to pass an arbitrary number of additional flags that customise and extend torchtyping. Two flags are built-in by default. torchtyping.is_named causes the names of tensor dimensions to be checked, and torchtyping.is_float can be used to check that arbitrary floating point types are passed in. (Rather than just a specific one as with e.g. TensorType[torch.float32].) For discussion on how to customise torchtyping with your own details, see the further documentation.

Check multiple things at once by just putting them all together inside a single []. For example TensorType["batch": ..., "length", "channels", float, is_named].

torchtyping.patch_typeguard()

torchtyping integrates with typeguard to perform runtime type checking. torchtyping.patch_typeguard() should be called at the global level, and will patch typeguard to check TensorTypes.

This function is safe to run multiple times. (It does nothing after the first run).

  • If using @typeguard.typechecked, then torchtyping.patch_typeguard() should be called any time before using @typeguard.typechecked. For example you could call it at the start of each file using torchtyping.
  • If using typeguard.importhook.install_import_hook, then torchtyping.patch_typeguard() should be called any time before defining the functions you want checked. For example you could call torchtyping.patch_typeguard() just once, at the same time as the typeguard import hook. (The order of the hook and the patch doesn't matter.)
  • If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes.
pytest --torchtyping-patch-typeguard

torchtyping offers a pytest plugin to automatically run torchtyping.patch_typeguard() before your tests. pytest will automatically discover the plugin, you just need to pass the --torchtyping-patch-typeguard flag to enable it. Packages can then be passed to typeguard as normal, either by using @typeguard.typechecked, typeguard's import hook, or the pytest flag --typeguard-packages="your_package_here".

Further documentation

See the further documentation for:

  • FAQ;
    • Including flake8 and mypy compatibility;
  • How to write custom extensions to torchtyping;
  • Resources and links to other libraries and materials on this topic;
  • More examples.
Owner
Patrick Kidger
Maths+ML PhD student at Oxford. Neural ODEs+SDEs+CDEs, time series, rough analysis. (Also ice skating, martial arts and scuba diving!)
Patrick Kidger
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022