deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Overview

deep-table

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Design

Architecture

As shown below, each pretraining/fine-tuning model is decomposed into two modules: Encoder and Head.

Encoder

Encoder has Embedding and Backbone.

  • Embedding makes continuous/categorical features tokenized or simply normalized.
  • Backbone processes the tokenized features.

Pretraining/Fine-tuning Head

Pretraining/Fine-tuning Head uses Encoder module for training.

Implemented Methods

Available Modules

Encoder - Embedding

  • FeatureEmbedding
  • TabTransformerEmbedding

Encoder - Backbone

  • MLPBackbone
  • FTTransformerBackbone
  • SAINTBackbone

Model - Head

  • MLPHeadModel

Model - Pretraining

  • DenoisingPretrainModel
  • SAINTPretrainModel
  • TabTransformerPretrainModel
  • VIMEPretrainModel

How To Use

Step 0. Install

python setup.py install

# Installation with pip
pip install -e .

Step 1. Define config.json

You have to define three configs at least.

  1. encoder
  2. model
  3. trainer

Minimum configurations are as follows:

from omegaconf import OmegaConf

encoder_config = OmegaConf.create({
    "embedding": {
        "name": "FeatureEmbedding",
    },
    "backbone": {
        "name": "FTTransformerBackbone",
    }
})

model_config = OmegaConf.create({
    "name": "MLPHeadModel"
})

trainer_config = OmegaConf.create({
    "max_epochs": 1,
})

Other parameters can be changed also by config.json if you want.

Step 2. Define Datamodule

from deep_table.data.data_module import TabularDatamodule


datamodule = TabularDatamodule(
    train=train_df,
    validation=val_df,
    test=test_df,
    task="binary",
    dim_out=1,
    categorical_cols=["education", "occupation", ...],
    continuous_cols=["age", "hours-per-week", ...],
    target=["income"],
    num_categories=110,
)

Step 3. Run Training

>> {'accuracy': array([0.8553...]), 'AUC': array([0.9111...]), 'F1 score': array([0.9077...]), 'cross_entropy': array([0.3093...])} ">
from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


estimator = Estimator(
    encoder_config,      # Encoder architecture
    model_config,        # model settings (learning rate, scheduler...)
    trainer_config,      # training settings (epoch, gpu...)
)

estimator.fit(datamodule)
predict = estimator.predict(datamodule.dataloader(split="test"))
get_scores(predict, target, task="binary")
>>> {'accuracy': array([0.8553...]),
     'AUC': array([0.9111...]),
     'F1 score': array([0.9077...]),
     'cross_entropy': array([0.3093...])}

If you want to train a model with pretraining, write as follows:

from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


pretrain_model_config = OmegaConf.create({
    "name": "SAINTPretrainModel"
})

pretrain_model = Estimator(encoder_config, pretrain_model_config, trainer_config)
pretrain_model.fit(datamodule)

estimator = Estimator(encoder_config, model_config, trainer_config)
estimator.fit(datamodule, from_pretrained=pretrain_model)

See notebooks/train_adult.ipynb for more details.

Custom Datasets

You can use your own datasets.

  1. Prepare datasets and create DataFrame
  2. Preprocess DataFrame
  3. Create your own datamodules using TabularDatamodule

Example code is shown below.

import pandas as pd

import os,sys; sys.path.append(os.path.abspath(".."))
from deep_table.data.data_module import TabularDatamodule
from deep_table.preprocess import CategoryPreprocessor


# 0. Prepare datasets and create DataFrame
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')

# 1. Preprocessing pd.DataFrame
category_preprocesser = CategoryPreprocessor(categorical_columns=["species"], use_unk=False)
iris = category_preprocesser.fit_transform(iris)

# 2. TabularDatamodule
datamodule = TabularDatamodule(
    train=iris.iloc[:20],
    val=iris.iloc[20:40],
    test=iris.iloc[40:],
    task="multiclass",
    dim_out=3,
    categorical_columns=[],
    continuous_columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
    target=["species"],
    num_categories=0,
)

See notebooks/custom_dataset.ipynb for the full training example.

Custom Models

You can also use your Embedding/Backbone/Model. Set arguments as shown below.

estimator = Estimator(
    encoder_config, model_config, trainer_config,
    custom_embedding=YourEmbedding, custom_backbone=YourBackbone, custom_model=YourModel
)

If custom models are set, the attributes name in corresponding configs will be overwritten.

See notebooks/custom_model.ipynb for more details.

Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022