deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Overview

deep-table

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Design

Architecture

As shown below, each pretraining/fine-tuning model is decomposed into two modules: Encoder and Head.

Encoder

Encoder has Embedding and Backbone.

  • Embedding makes continuous/categorical features tokenized or simply normalized.
  • Backbone processes the tokenized features.

Pretraining/Fine-tuning Head

Pretraining/Fine-tuning Head uses Encoder module for training.

Implemented Methods

Available Modules

Encoder - Embedding

  • FeatureEmbedding
  • TabTransformerEmbedding

Encoder - Backbone

  • MLPBackbone
  • FTTransformerBackbone
  • SAINTBackbone

Model - Head

  • MLPHeadModel

Model - Pretraining

  • DenoisingPretrainModel
  • SAINTPretrainModel
  • TabTransformerPretrainModel
  • VIMEPretrainModel

How To Use

Step 0. Install

python setup.py install

# Installation with pip
pip install -e .

Step 1. Define config.json

You have to define three configs at least.

  1. encoder
  2. model
  3. trainer

Minimum configurations are as follows:

from omegaconf import OmegaConf

encoder_config = OmegaConf.create({
    "embedding": {
        "name": "FeatureEmbedding",
    },
    "backbone": {
        "name": "FTTransformerBackbone",
    }
})

model_config = OmegaConf.create({
    "name": "MLPHeadModel"
})

trainer_config = OmegaConf.create({
    "max_epochs": 1,
})

Other parameters can be changed also by config.json if you want.

Step 2. Define Datamodule

from deep_table.data.data_module import TabularDatamodule


datamodule = TabularDatamodule(
    train=train_df,
    validation=val_df,
    test=test_df,
    task="binary",
    dim_out=1,
    categorical_cols=["education", "occupation", ...],
    continuous_cols=["age", "hours-per-week", ...],
    target=["income"],
    num_categories=110,
)

Step 3. Run Training

>> {'accuracy': array([0.8553...]), 'AUC': array([0.9111...]), 'F1 score': array([0.9077...]), 'cross_entropy': array([0.3093...])} ">
from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


estimator = Estimator(
    encoder_config,      # Encoder architecture
    model_config,        # model settings (learning rate, scheduler...)
    trainer_config,      # training settings (epoch, gpu...)
)

estimator.fit(datamodule)
predict = estimator.predict(datamodule.dataloader(split="test"))
get_scores(predict, target, task="binary")
>>> {'accuracy': array([0.8553...]),
     'AUC': array([0.9111...]),
     'F1 score': array([0.9077...]),
     'cross_entropy': array([0.3093...])}

If you want to train a model with pretraining, write as follows:

from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


pretrain_model_config = OmegaConf.create({
    "name": "SAINTPretrainModel"
})

pretrain_model = Estimator(encoder_config, pretrain_model_config, trainer_config)
pretrain_model.fit(datamodule)

estimator = Estimator(encoder_config, model_config, trainer_config)
estimator.fit(datamodule, from_pretrained=pretrain_model)

See notebooks/train_adult.ipynb for more details.

Custom Datasets

You can use your own datasets.

  1. Prepare datasets and create DataFrame
  2. Preprocess DataFrame
  3. Create your own datamodules using TabularDatamodule

Example code is shown below.

import pandas as pd

import os,sys; sys.path.append(os.path.abspath(".."))
from deep_table.data.data_module import TabularDatamodule
from deep_table.preprocess import CategoryPreprocessor


# 0. Prepare datasets and create DataFrame
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')

# 1. Preprocessing pd.DataFrame
category_preprocesser = CategoryPreprocessor(categorical_columns=["species"], use_unk=False)
iris = category_preprocesser.fit_transform(iris)

# 2. TabularDatamodule
datamodule = TabularDatamodule(
    train=iris.iloc[:20],
    val=iris.iloc[20:40],
    test=iris.iloc[40:],
    task="multiclass",
    dim_out=3,
    categorical_columns=[],
    continuous_columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
    target=["species"],
    num_categories=0,
)

See notebooks/custom_dataset.ipynb for the full training example.

Custom Models

You can also use your Embedding/Backbone/Model. Set arguments as shown below.

estimator = Estimator(
    encoder_config, model_config, trainer_config,
    custom_embedding=YourEmbedding, custom_backbone=YourBackbone, custom_model=YourModel
)

If custom models are set, the attributes name in corresponding configs will be overwritten.

See notebooks/custom_model.ipynb for more details.

UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022