Repositório para o #alurachallengedatascience1

Overview

1° Challenge de Dados - Alura

Badge em Desenvolvimento

A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas. Logo na primeira semana, a liderança nos informa que é muito necessário realizar um estudo quanto ao Churn da empresa. É explicado que o churn indica se um cliente cancelou ou não o contrato com a empresa, e também que, nos casos de perda do cliente a empresa também perde faturamento, o que ocasiona prejuizos na receita final.

Desse modo, nossa liderança informa que temos 4 semanas para buscar uma alternativa que possa minimizar a saída de clientes e nos entrega um conjunto de dados da Alura Voz que contém diversas informações sobre os clientes e também informa se eles deixaram ou não a empresa.

Sabemos que, antes de pensar em qualquer alternaiva, é preciso entender as informações que recebemos e, após uma pequena reunião, concluímos que na primeira semana nós nos dedicaríamos a entender o banco de dados, descobrir os tipos de dados, verificar a existencia de valores incoerentos e corrigi-los caso seja necessário.

Semana 1 - Limpeza dos dados

Dados

Ao observar a Base de dados da Alura Voz, verificamos que essa é uma base disponibilizada via API em formato JSON com várias camandas de dados.

Junnto a esses dados também foi disponibilizado o dicionário dos dados que nele contém todas as informações sobre as colunas do banco de dados.

Nela, além da informação se o cliente deixou ou não a empresa, também contém:

Cliente:

  • gender: gênero (masculino e feminino)
  • SeniorCitizen: informação sobre um cliente ter ou não idade igual ou maior que 65 anos
  • Partner: se o cliente possui ou não um parceiro ou parceira
  • Dependents: se o cliente possui ou não dependentes

Serviço de telefonia

  • tenure: meses de contrato do cliente
  • PhoneService: assinatura de serviço telefônico
  • MultipleLines: assisnatura de mais de uma linha de telefone

Serviço de internet

  • InternetService: assinatura de um provedor internet
  • OnlineSecurity: assinatura adicional de segurança online
  • OnlineBackup: assinatura adicional de backup online
  • DeviceProtection: assinatura adicional de proteção no dispositivo
  • TechSupport: assinatura adicional de suporte técnico, menos tempo de espera
  • StreamingTV: assinatura de TV a cabo
  • StreamingMovies: assinatura de streaming de filmes

Contrato

  • Contract: tipo de contrato
  • PaperlessBilling: se o cliente prefere receber online a fatura
  • PaymentMethod: forma de pagamento
  • Charges.Monthly: total de todos os serviços do cliente por mês
  • Charges.Total: total gasto pelo cliente

Tendo essas informações entendemos nossos dados e, assim, podemos realizar uma análise mais técnica, buscando entender JSON, os dados e realizar o tratamento deles.

Todo o desenvolvimento feito na nossa 1° semana pode ser observado no notebook semana 1.

#alura #alurachallengedatascience1

Conheça a equipe

Sthefanie Monica

Bacharela em Engenharia Elétrica pela UTFPR e atualmente instrutora de Data Science na Alura. Durante o período de graduação realizei diversas pesquisas voltadas à redes neurais e visão computacional, inclusive um período de pesquisa no Hospital Israelita Albert Einstein. No meu tempo livre adoro jogar, seja boardgames ou jogos eletrônicos, e amo conhecer novos lugares e pessoas, então estou sempre planejando a próxima viagem.

Ana Clara

Sou bacharela em Informática Biomédica e atualmente mestranda em Bioengenharia, ambas pela USP. Atuo como pesquisadora FAPESP e instrutora na Escola de Dados da Alura. Já realizei estágio no Hospital das Clínicas-FMRP, sou cofundadora e atual conselheira do grupo Data Girls. Possuo grande interesse na área de Ciência de Dados e Inteligência Artificial com aplicações em diferentes áreas de negócio. Além disso sou apaixonada por livros, séries, games e um bom café.

Bruno Raphaell

Estudante de engenharia elétrica na Universidade Federal do Piauí (UFPI) e atualmente scuba de Data Science na Alura. Apaixonado por música, filmes biográficos e programação. No tempo livre tento sair do prata no LoL, tocar algum instrumento e assistir filmes e séries.

João Miranda

Bacharel em Matemática pela UFMG e cursando MBA em Data Science e Analytics na USP/Esalq. Atualmente sou monitor na Escola de Dados do grupo Alura. Gosta muito de livros, jogos eletrônicos, boardgames e tiro com arco.

Mirla Costa

Graduanda em Engenharia elétrica pela Universidade Federal do Piauí com pesquisa focada em Aprendizado de Máquina e Inteligência Computacional. Atuo como Scuba na escola de Data Science da Alura sempre amei muito programar, ensinar de trabalhar com tecnologia. Meu tempo livre dedico a brincar com meus animias, assistir animações e séries, além de jogar RPG de mesa.

Owner
Sthe Monica
Instrutora da Alura, engenheira, player de RPG, joguinhos online e apaixonada por tecnologia desde pequena.
Sthe Monica
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022